JORC TECHNICAL REPORT

(following 2012 Edition JORC Code guidelines)

Mineral Resource Estimation

Barruecopardo Tungsten deposit

Saloro S.L.U.

Barruecopardo, Castilla y León, Spain

prepared by
Jörg Pohl (EurGeol. \#1728)
Independent Resource Geologist
prepared for Saloro S.L.U.

INDEX

1 EXECUTIVE SUMMARY 8
2 INTRODUCTION 11
2.1 Scope of Work. 11
2.2 Sources of information 11
2.3 Site Visits 11
2.3.1 Competent Person 11
2.3.2 Company Geologist 11
3 RELIANCE OF OTHER EXPERTS 12
4 PROPERTY DESCRIPTION AND LOCATION. 13
4.1 Project Location 13
4.2 Mineral Tenement and Land Tenure Status 13
4.2.1 Reference and Location of Permit 13
4.2.2 Type and Status of Permit 14
4.2.3 Restrictions within Permit 14
4.2.4 Security of Permit 14
4.2.5 Any significant Risks. 14
5 ACCESSIBILITY, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY 15
6 HISTORY 18
6.1 Exploration History 18
6.2 Project History 18
6.3 Previous Resource Estimations 18
7 GEOLOGY SETTING AND MINERALISATION 19
7.1 Regional Geology 19
7.2 Deposit geology 20
7.2.1 Geological model 20
7.3 Geological investigations 23
8 DEPOSIT TYPE 24
9 EXPLORATION 25
10 DRILLING 26
10.1 Drilling Methods 26
10.1.1 Diamond drilling 26
10.1.2 Reverse Circulation drilling 26
10.2 Drill sample Recovery 26
JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023 2

Saloro

10.3 Location of Data. 26
10.4 Logging 27
10.5 Drill Core logging 27
10.6 Reverse Circulation logging 27
10.7 Data Spacing and Distribution 27
10.8 Orientation of data in relation to Geological Structures 27
11 SAMPLE PREPARATION AND ANALYSIS 28
11.1 Sampling Techniques 28
11.2 Subsampling techniques 28
11.3 QAQC of subsampling stages 28
11.4 Sample security 28
11.5 QAQC of assay stages 28
11.5.1 Repeat Samples 29
11.5.2 Pulp Sample Duplicates 30
11.5.3 Blanks 31
11.5.4 Certified Reference Material - CRM (Standards) 32
11.5.5 Umpire Samples 33
11.5.6 Quality of Pulverisation process 34
11.6 Historic data 34
11.7 In situ Dry Bulk Density 34
12 Verification of Sampling and Assaying 35
12.1 Significant intersections 35
12.2 Twin Holes 35
12.3 Data management, Validation and Storage 35
13 METALLURGICAL TESTING AND MINERAL PROCESSING 36
13.1 Metallurgical test work 36
13.2 Mineral processing 36
14 ESTIMATION AND REPORTING OF MINERAL RESOURCES 37
14.1 Data Integrity 37
14.2 Database 38
14.3 Comparison RC vs. DD samples 40
14.4 Drill hole and Modelling Extensions 42
14.5 Estimation and Modelling Techniques 43
14.5.1 Topography 43
14.5.2 Wireframes 43
14.5.3 Composites 46
14.5.4 Block Model 46
14.5.5 Domain Statistics 47
14.5.6 Kriging neighbourhood analysis KNA 49
14.5.7 Zones of Risk 56
14.6 Mineral Resource Estimation Method 56
14.6.1 Deleterious Elements 57
14.6.2 Top Cut 58
14.6.3 Definition of ordinary kriging parameters 59
14.6.4 Variography 60
14.6.5 Estimation process 61
14.7 Classification 62
14.8 Use of Geological Criteria 62
14.9 Tonnage factors 62
14.10 Validation of Resource Estimation 62
14.10.1 Comparison of input and output grades 62
14.10.2 Comparison of input and output distributions 63
14.10.3 Swath plots 64
14.10.4 Visual validation on cross sections 66
14.10.5 Geological 72
14.10.6 Reconciliation 72
14.10.7 Grade tonnage curves and cut off grade 72
14.10.8 Comparison to Previous MRE 73
14.10.9 Mining Factors 73
14.10.10 Environmental Factors 73
14.10.11 Mineral Resource Classification 74
14.10.12 Relevant Factors for Classification 74
14.10.13 Quality and Quantity of Data 75
14.10.14 Distribution of Data 75
14.10.15 Geological and Mineralogical Continuity 75
14.10.16 Competent Person Statement 75
14.10.17 Forward Looking Statement and Disclaimer 76
15 ADJACENT PROPERTIES 77
Saloro
16 OTHER RELEVANT DATA AND INFORMATION 77
17 CONCLUSION AND RECOMMENDATIONS 78
18 REFERENCES 80
List of Figures
Figure 4-1 Location map Spain and Barruecopardo 13
Figure 4-2 Barruecopardo tungsten mine exploitation concession 14
Figure 5-1 Average High and Low Temperature Barruecopardo (from C WeatherSpark.com) 15
Figure 5-2 Average Monthly Rainfall in Barruecopardo (from C WeatherSpark.com) 15
Figure 5-3 Average Wind Direction in Barruecopardo (from C WeatherSpark.com) 16
Figure 5-4 Average Wind Speed in Barruecopardo (from C WeatherSpark.com) 16
Figure 5-5 View towards the North with the Village of Barruecopardo in the background 17
Figure 5-6 View looking West across the Barruecopardo open cut, direction Portugal (July 2023) 17
Figure 7-1 Regional Geology Spain (IGME) on Google Earth 19
Figure 7-2 Barruecopardo mine on Geological map IGME (left) and geology superimposed on Google Earth 20
Figure 7-3 Extract from MAGNA50 sheet 449 "Vilvestre" with the Barruecopardo deposit area in the centre 21
Figure 7-4 Vein swarm within the open pit. Veins marked in blue are mineralised. Dimension from left to right: 3 m 22
Figure 7-5 Detailed image of a mineralised vein in the open pit 23
Figure 8-1 Barruecopardo northern pit wall with subvertical vein swarms and/or fractures (lower picture interpreted) 24
Figure 11-1 Example scheelite distribution on half core using UV light 28
Figure 11-2 QAQC quarter core sample duplicates 29
Figure 11-3 QAQC quarter core sample duplicates (grades $<0.2 \% \mathrm{WO}_{3}$) 29
Figure 11-4 RC Field Sample Duplicates 30
Figure 11-5 DD Pulp Sample Duplicates 30
Figure 11-6 RC Pulp Sample Duplicates 31
Figure 11-7 DD Blank Samples 31
Figure 11-8 RC Blank Samples 32
Figure 11-9 Certified Reference Material (CRM) over time 32
Figure 11-10 Certified Reference Material (CRM) Mean Percent Difference 33
Figure 11-11 Umpire Samples 33
Figure 14-1 Frequency of sample intervals falling within the 9 wireframes 39
Figure 14-2 Tungsten grade histogram DDH samples 41
Figure 14-3 Tungsten grade histogram RC samples. 41
Figure 14-4 Tungsten grade histogram DDH samples Domain 4 42
Figure 14-5 Tungsten grade histogram RC samples Domain 4) 42
Figure 14-6 Long section SSW-NNE with current topography showing open pit and drill holes (z exaggerated by 1.5) 43
Figure 14-7 Modelled mineralised wireframes Domain 1 to 9 (oriented North) 44
Saloro
Figure 14-8 The Barruecopardo open pit mine with drill holes (May 2023) and mineralised domains (November 2023) 45
Figure 14-9 Mineralised interval 46
Figure 14-10 Sample composite grade distribution (all domains) 48
Figure 14-11 5m composite sample grade distribution (selected domains) 49
Figure 14-12 KNA: Search Distance 51
Figure 14-13 KNA: Number of min/max samples 52
Figure 14-14 KNA: Number of samples per hole 53
Figure 14-15 KNA: Maximum vertical search distance 54
Figure 14-17 KNA: discretisation points 55
Figure 14-18 Histogram plot Phosphorous - two populations 57
Figure 14-19 Barruecopardo open pit mine - wireframes 59
Figure 14-20 Variogram all three directions 61
Figure 14-21 Composite grades vs. Block grades 64
Figure 14-22 Swath plot Northing 65
Figure 14-23 Swath plot Easting 65
Figure 14-24 Swath plot Elevation 66
Figure 14-25 Barruecopardo open pit tungsten deposit Plan View 68
Figure 14-26 Section A (incl. drill hole BD040) 69
Figure 14-27 Section B (incl. drill hole BD042) 69
Figure 14-28 Section C (incl. drill hole BD052) 70
Figure 14-29 Section D (incl. drill hole BD045) 70
Figure 14-30 Section E (incl. drill hole BAR29) 71
Figure 14-31 Grade tonnage curve for Measured, Indicated and Inferred resources 72
Figure 14-32 Measured-Indicated-Inferred areas (left: plan view, right: rotated towards north) 75
List of Tables
Table 1-1. Barruecopardo Mineral Resource Estimate as of $9^{\text {th }}$ of November 2023 (The MRE is reported using a $0.05 \% \mathrm{WO}_{3}$ cut-off grade. All values are rounded to reflect confidence levels in the estimate.) 10
Table 4-1 Vertices of the Barruecopardo tungsten mine exploitation concession 13
Table 6-1 Comparison table of earlier MRE (all values are rounded to reflect confidence levels in the estimate) 18
Table 14-1 Barruecopardo Mineral Resource Estimate as of $9^{\text {th }}$ November 2023 (The MRE is reported using a $0.05 \% \mathrm{WO}_{3}$ cut-off grade. All values are rounded to reflect confidence levels in the estimate.) 37
Table 14-2 Drillhole statistics (*av. depth calculated only for DD holes and excluding 2021-22 short holes) 38
Table 14-3 Tungsten grade comparison 1 m and 5 m composites 39
Table 14-4 Basic statistics DDH and RC initial 1m samples 40
Table 14-5 Basic DD 1m sample domain statistics 40
Table 14-6 Basic RC 1 m sample domain statistics 41
Table 14-7 Block Model Extensions 47
Table 14-8 Block model attributes 47
JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023 6
Table 14-9 Basic sample composite statistics 48
Table 14-11 Search ellipse parameters by run and domain OK and ID² 60
Table 14-12 Variogram parameters 60
Table 14-13 Percentages of blocks populated per estimation pass ($\operatorname{cog} 0.05 \% \mathrm{WO}_{3}$) 61
Table 14-14 Grade reduction during the estimation process (composites or blocks > background value $0.002 \% \mathrm{WO}_{3}$) 63
Table 14-15 Comparison 2023 MRE with 2022 MRE 73

1 EXECUTIVE SUMMARY

Saloro S.L.U., who is developing the Barruecopardo Tungsten deposit in an active open pit mining operation since 2019, requested Jörg Pohl, independent mining consultant to re-estimate of the remaining resource as of May 2023. On the $10^{\text {th }}$ of August 2023, EQ Resources announces that EQ Resources acquires Saloro S.L.U. . On the $6^{\text {th }}$ of November EQ Resources announces to having entered into a conditional agreement to acquire 100\% of the Barruecopardo Tungsten Mine.

This requested Mineral Resource Estimation (MRE) is documented in the here enclosed technical report.

In 2012, a Mineral Resource Estimate has been prepared and announced, in accordance with the JORC standard, by CSA Global UK (CSA). An in-house non JORC report update to this model and estimate was prepared by Jörg Pohl in 2022.

The current MRE and subject of this technical report has been prepared by Jörg Pohl, independent resource geologist, acting as Competent Person, following the JORC 2012 standard guidelines.

The first JORC report on this deposit, presented by CSA in 2012 was based on the results of 83 diamond holes (DD), drilled between 2006 and 2011 in close distance to the historic pit wall. In 2012 and 2015, 7 more DD holes were added, testing the eastern extension of the deposit. In 2019 a short-hole drill campaign took place with 27 diamond holes in phase 1 area, to investigate structural control, using an acoustic televiewer. In 2021 and 2022, 13 DD hole have been drilled and between 2022 and 2023 another 13 DD holes have been added, to investigate continuity at depth. This sums up to a total number of 143 DD holes. After every drill campaign, the initial block model has been reestimated in the new areas, to create updated estimates, for an internal purpose. In parallel, grade control models have been prepared using exclusively the 378 reverse circulation holes (RC) that have been drilled for this purpose between 2018 and 2020, targeting the areas to be mined immediately.

The holes drilled between 2021 and April 2022, had the objective to investigate several deeper levels of the deposit and to explore previously undrilled areas. This phase of the mine is referred to as "Phase 6". For that MRE (May 2022), as well as all previous resource estimations only the diamond drill holes have been used.

The current MRE, performed in November 2023, uses two significantly different procedures, compared to earlier estimations:

1. DD and RC hole information (assay, survey and geology) is incorporated in the same model and used for the MRE.
2. the strategy for the construction of wireframes has been changed from as many as 20 individual "tight" domains to 9 volumes, in which the estimation process will take place.

This MRE focuses on tight soft boundaries, controlled through the estimation parameters, compared to the earlier strategy using narrow hard boundaries with 20 individual domains.

Origin of this change in estimation is the continued discussion on reconciliation, indicating lower grades than predicted by previous models. Objective for the MRE of this technical report is to better define the deposit and achieve closer predictions to the operational grades, as well as to evaluate the remaining in situ minable resource.

From field observations and in discussion with the Saloro Geologists, several basic modelling principles have been defined over the years. Most importantly is the constant general strike direction of approximately 150 NNE for the main part of the mineralised veins. A strike direction of 100 NNE is applied for veinlets at the north-western part of the main structure. For all structures a steep dip of $+/-850$ towards the ESE ($+/-1050$) has been observed.

All areas were modelled in the same way, respecting those principles, which resulted in 9 individual and well-defined wireframes acting as hard boundaries. Internal waste was accepted within any of the 9 volumes, resulting in a significant decrease in grade, which is considered to closer represent the current mining operations.

From those wireframes, the mineralised interceptions are extracted into the database. All samples falling within one continuous interception were then composited to 5 m intervals for the estimation, smoothing out the initial sample intervals. No top cut was applied. This new approach was requested by the clients chief geologist, to account for the narrow mineralised veins, as they occur in the Barruecopardo Tungsten deposit.

Those composites were analysed geo-statistically by domain. Through variography the three estimation directions and a nugget value were determined for the ordinary kriging estimation process.

As besides Tungsten $\left(\mathrm{WO}_{3}\right)$, the three deleterious elements As, P and S are assayed. Those results were analysed, and modelled, using the Inverse Distance Squared technique (ID2). Results are then written into each block of the block model.

The parent block size adopted for this MRE is $6 x 6 \times 5 \mathrm{~m}(\mathrm{x}-\mathrm{y}-\mathrm{z}$), allowing sub-blocking to a minimum block size of $1.5 \times 1.5 \times 5 \mathrm{~m}$ respectively. Parent block size has not been changed in respect to earlier MRE's.

A common density value of 2.62 SG has been assigned to the entire rock mass below surface. This is different to the former estimations, were waste rock and some granites were given different densities. Those differences were not clear and therefore not applied any more.

Input and output data were compared after the estimation process and are of acceptable quality, which was confirmed during the validation of the new block model.

Saloro

The classification of the current MRE was assigned according to a certain level of confidence into the data and geological knowledge, which depended on drill hole spacing, interpolation parameters used per pass and several QAQC kriging attributes, calculated during the ordinary kriging process.

The topography used to estimate the model is the latest topography from June 2023, provided by Saloro's internal topographer.

It is concluded that all employed techniques (drilling, sampling, assaying, and estimation) are well documented and of sufficient quality to be used for this resource estimation. The following tonnages and grades result from the given input data:

Category	Tonnage $\mathbf{(M \mathbf { M })}$	Grade (WO $\mathbf{3}$ \%)	Contained Metal (t of $\mathbf{W O}_{\mathbf{3}} \mathbf{)}$
Measured	10.05	0.191	19,204
Indicated	10.46	0.174	18,200
Inferred	3.86	0.259	9,993
Grand Total	$\mathbf{2 4 . 3 7}$	$\mathbf{0 . 1 9 5}$	$\mathbf{4 7 , 5 2 7}$

Table 1-1. Barruecopardo Mineral Resource Estimate as of 9th of November 2023 (The MRE is reported using a 0.05\% WO_{3} cut-off grade. All values are rounded to reflect confidence levels in the estimate.)

The resource numbers in Table 1-1 above are referring to the remaining in situ resource as per $9^{\text {th }}$ of November 2023, using the June 2023 topography. For all resource statements in this report, a cut-off grade (cog) of $0.05 \% \mathrm{WO}_{3}$ has been applied.

2.1 Scope of Work

After finalising 13 more diamond holes in May 2023, drilled in areas 6 and 7 of the deposit, and the reception of all chemical assays, Saloro S.L.U. requested a mineral resource update to evaluate the remaining resources of the Barruecopardo deposit in June 2023.

This technical report aims to cover all areas of the mining operation, with focus on the Mineral Resource Estimation, such as:

- QAQC and interpretation of all the assay data received from Saloro
- Construction of grade wireframes using the entire DDH and RC dataset
- Extraction of data falling inside the new wireframes
- Statistical analysis (KNA, grade distribution, top cut discussion, variography)
- Ordinary kriging of WO_{3} composites into $6 \times 6 \times 5 \mathrm{~m}$ parent blocks, allowing sub-blocking to $1.5 \times 1.5 \times 5 \mathrm{~m}$
- Inverse distance squared (ID^{2}) estimation of the deleterious elements As, P, S
- Model validation
- Resource Classification

2.2 Sources of information

All information used for the MRE has been supplied by Saloro.
The drillhole data has been supplied in form of Excel spreadsheets. For this MRE both diamond drill holes and RC holes and their associated assay data has been used.

Assay data is from Saloro's on site laboratory. Assay method is XRF Fluorescence Spectrography with pressed powder pellets.

Density data has been supplied by Saloro, where one common value of $2.62 \mathrm{~g} / \mathrm{cm}^{3}$ has been applied to all rocks below surface.

Topography in DTM format has been supplied by Saloro's topographer and has been generated though drone photography internally. Resolution of the digital terrain model is 3 mx 3 m outside the main pit area and down to approximately 30 cm within the open pit.

2.3 Site Visits

2.3.1 Competent Person

Jörg Pohl, acting as CP for Saloro and this MRE conducted site visits throughout 2019 and 2020, with two continuous 14-day periods on site in Barruecopardo in June and July 2019 respectively.

Site visits to the mine have been made regularly over the years, with the latest being on $28^{\text {th }}$ of July 2021, $2^{\text {nd }}$ of November 2022 and the $17^{\text {th }}$ of July 2023.

2.3.2 Company Geologist

The company geologists completed daily site visits during the drill campaigns. Saloro's main office is nearby the Barruecopardo deposit, within the mining concession. All DD and RC material was brought to the office and the core shed complex for further treatment.

3 RELIANCE OF OTHER EXPERTS

The MRE was completed by Jörg Pohl (Independent Resource Geologist) acting as competent person for Saloro, with assistance from Carlos Rodriguez (Chief Mine Geologist) and Miguel Ángel Menéndez (Chief Mining Engineer / Mine manager), both full time employees with Saloro SLU.

Further geological interpretations and modelling ideas came from Tony Bainbridge, EQ Resources Chief Geologist, and were well appreciated.

Saloro

4 PROPERTY DESCRIPTION AND LOCATION

4.1 Project Location

The project is located in the municipality of the city of Barruecopardo, part of the province of Castilla and León in Western Spain, in proximity to the Portuguese border, which is marked by the river Duero in this area.

Figure 4-1 Location map Spain and Barruecopardo
The Barruecopardo mine is located halfway between the city of Salamanca (Spain) and Porto on the Portuguese Atlantic cost, and some 260 km WNW of Spain's capital Madrid.

4.2 Mineral Tenement and Land Tenure Status

4.2.1 Reference and Location of Permit

The permit is situated south of the village of Barruecopardo in the south-western part of the Spanish autonomous community Castilla and León. The table below indicates the vertices of the mining concession (C.E. BARRUECOPARDO № 6.432-10). Area of the concession spans over $6.052 \mathrm{~km}^{2}$ (605.2 ha).

Vertice	ETRS89 Zone 29N	
	Longitud (W)	Latitud (N)
0	$6^{\circ} 39^{\prime} 16.3^{\prime \prime}$	$41^{\circ} 03^{\prime} 56.2^{\prime \prime}$
1	$6^{\circ} 39^{\prime} 16.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 16.2^{\prime \prime}$
2	$6^{\circ} 39^{\prime} 56.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 16.2^{\prime \prime}$
3	$6^{\circ} 39^{\prime} 56.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 36.2^{\prime \prime}$
4	$6^{\circ} 40^{\prime} 36.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 36.2^{\prime \prime}$
5	$6^{\circ} 40^{\prime} 36.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 56.2^{\prime \prime}$
6	$6^{\circ} 40^{\prime} 56.3^{\prime \prime}$	$41^{\circ} 02^{\prime} 56.2^{\prime \prime}$
7	$6^{\circ} 40^{\prime} 56.3^{\prime \prime}$	$41^{\circ} 03^{\prime} 56.2^{\prime \prime}$
0	$6^{\circ} 39^{\prime} 16.3^{\prime \prime}$	$41^{\circ} 03^{\prime} 56.2^{\prime \prime}$

Table 4-1 Vertices of the Barruecopardo tungsten mine exploitation concession

Saloro

Figure 4-2 Barruecopardo tungsten mine exploitation concession

4.2.2 Type and Status of Permit

The concession of the Barruecopardo Tungsten mine is an exploitation concession (C.E. BARRUECOPARDO № 6.432-10) and has been granted in 2014 for a period of 30 years, until 2044. It is renewable two times for the same period until 2074 and finally 2104.

4.2.3 Restrictions within Permit

No restrictions are specified within the permit.

4.2.4 Security of Permit

The permit is 100% owned by Saloro SLU.

4.2.5 Any significant Risks

No significant risks have been communicated or are known within the permit.
JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

5 ACCESSIBILITY, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY

Barruecopardo is accessible from the existing public road network, with power supply from the local grid and water availability from the flooded historic open pit which is recycled in a closed circuit.

The climate consists of six colder months (November through April) with average temperatures around $10{ }^{\circ} \mathrm{C}$ and six warmer months (May through October) with average temperatures above approximately $20^{\circ} \mathrm{C}$. Highest temperatures of $40^{\circ} \mathrm{C}$ can be experienced in summer, with lowest temperatures just below $0 \div \mathrm{C}$ in winter.

Figure 5-1 Average High and Low Temperature Barruecopardo (from C WeatherSpark.com)

The annual rainfall is about 800 mm , mainly occurring during autumn and winter.

Figure 5-2 Average Monthly Rainfall in Barruecopardo (from C WeatherSpark.com)

Predominant wind direction is between WNW to SSW.

Figure 5-3 Average Wind Direction in Barruecopardo (from C WeatherSpark.com)

Figure 5-4 Average Wind Speed in Barruecopardo (from C WeatherSpark.com)

O Saloro

The landscape is characterised by rolling hills with vertical differences of not more than 50 m . Agricultural activity is mainly crop and pig or cattle farming.

Figure 5-5 View towards the North with the Village of Barruecopardo in the background.

Figure 5-6 View looking West across the Barruecopardo open cut, direction Portugal (July 2023).

6 HISTORY

6.1 Exploration History

Tungsten has been mined in Spain and the area of Barruecopardo since the early $20^{\text {th }}$ century. The Barruecopardo mine has been active until 1982 with a steady state production of approximately 500 kt of WO_{3} per year. Since 1984 the mine was inactive, and the open pit got flooded.

6.2 Project History

Since early 2014 Saloro SLU is the 100% owner of the deposit. After 10 years of intense studies, design work, permitting and financing, including 15 months of construction works, Saloro reopened the mine in 2019 after almost 40 years. Since then, Saloro is producing 260.000 t of high quality WO_{3} concentrate per year from their open pit mining operations.

6.3 Previous Resource Estimations

The Barruecopardo mine has been exploited since the 1940's but then ceased production in 1982. In 2006 the mine was acquired by Saloro, who granted the currently active mining concession.

Saloro's first resource estimate of the Barruecopardo deposit was prepared by CSA Global UK (CSA) in 2012. In 2018 CSA re-estimated the deposit. From that time on, estimation updates have been sourced to the author of this document.

The most relevant figures are shown in the figure below.

Year	Resource Category $(\mathrm{M}-\mathrm{I}-\mathrm{I})$	Tonnes (Mt)	WO_{3} $(\%)$	WO_{3} (tonnes of metal)
$2012(\mathrm{CSA})$	(M-I-I)	27.4	0.26	72,000
$2021(\mathrm{JP})$	not defined	32.9	0.246	81,000
$2022(\mathrm{JP})$	(M-I-I)	45.9	0.205	94,000
$2023(\mathrm{JP})$	(M-I-I)	24.4	0.195	47,500

[^0]
7 GEOLOGY SETTING AND MINERALISATION

The deposit area is part of the Central Iberian Zone (CIZ) of the Iberian massif. The basement rocks are formed of two discordant overlaying metasedimentary units and a large volume of granitic variscan rocks that intruded into those metasediments.

The Palaeozoic metasediments are part of the Shist-Grauwacke Complex (CEG) divided into "Complejo de Alamo and the Upper Serie" and secondly a series composed of Quartzites and shists, aged lower Ordovician.

Predominant rocks in the area are massive intrusive granites and a metamorphic sediment sequence. The granite intrusions took place during the variscan age ($326-311 \mathrm{Ma}$) and have been deformed during the variscan orogeny, with later reactivations during the alpine orogeny. The sediments are of Palaeozoic age.

All rocks are heavily deformed, showing 3-4 deformation phases. Mayor orientations trending NNE-SSW (10-40ㅇ) and NW-SE (120-140ㅇ)

7.1 Regional Geology

The area of Barruecopardo is shown on the Vilvestre 1:50.000 map from IGME, the Spanish Geological and Mining Institute, number 449.

Figure 7-1 Regional Geology Spain (IGME) on Google Earth
Predominant are the different granite units from orange to pink colours and the shists of the CEG, the shist greywacke complex in green.

7.2 Deposit geology

On a deposit scale, all mentioned lithologies are present. Most significantly and well visible in the open cut are the veinlets containing the Scheelite and Wolframite mineralisation. These target formations are interpreted to be extensional, dilatational structures.

In several studies and constant geological and structural work by the Saloro geologists, their sub verticality and continuous alignment has been demonstrated with the deepening of the open pit operation.

Four main units are present (see map below):

- 13: Granite "Ala de Mosca", of medium to large grain size
- 14: Zone of occurrence of quartz dikes, and 14a pegmatites
- 18: Granite of Barruecopardo
- 19: Metasediments (pellitic-psamitic) with quarzitic intercalations

Figure 7-2 Barruecopardo mine on Geological map IGME (left) and geology superimposed on Google Earth
In Figure 7-2, the air picture shows the mine area with its main target being the pegmatites, aligned 159 NNE. West of the open cut is another area with abundant pegmatites which might indicate further exploration potential.

7.2.1 Geological model

The Barruecopardo Tungsten mineralisation is hosted within a pegmatitic lens inside a larger granite occurrence called the "Ala de Mosca Granite". Within this complex a frequent occurrence of quartz veins is present. The mineralised vein swarms observed as narrow sheeted vein systems are interpreted as dilateral structures formed during tectonic activities of variscan age. Those spaces have then been filled during the active period and are the host of mineralisation.

7.2.1.1 Structures

Significant tectonic events occurred during the variscan orogeny, which were then reactivated during the alpine orogeny. Two main orientations of structures exist in the area being NW-SE (mainly dextral) with a general dip of 40-60 degrees towards S-SW. Those are well visible in the Grauwacke Shist Complex to the West. Secondly and predominantly visible granite complex proximate to the mine area are NNE-SSW (mainly sinistral), dipping steeply to the SSE. Both orientations may show minor vertical movements.

Saloro

Figure 7-3 Extract from MAGNA50 sheet 449 "Vilvestre" with the Barruecopardo deposit area in the centre
With the mine site in the centre of Figure 7-3, the orientation of the main structures indicated by IGME (Instituto Geológico y Minero de España) on the 1:50k geological map. Their main orientations are: NNE-SSW and ENE-WSW.

7.2.1.2 Mineralisation

Mineralisation occurs within the pegmatitic veinlets cutting through the granite complex.
Two main Tungsten minerals are present. Predominant is Scheelite $\left(\mathrm{CaWO}_{4}\right)$ which is fluorescent under UV light and to a minor extent Wolframite (($\left.\mathrm{Fe}, \mathrm{Mn}) \mathrm{WO}_{4}\right)$. Other abundant minerals are Quartz, muscovite, pyrite, chalcopyrite and arsenopyrite.

During the geological logging, all samples (DD and RC) are checked under UV light, to detect possible Wolfram mineralisation. Attention is paid to all quartz occurrences with origin from veins, if distinguishable.

Caloro

7.2.1.3 Veins

The mineralised veins are oriented along strike with a main orientation of NNE 10-150 and usually range between 1 mm and 10 cm of thickness.

Figure 7-4 Vein swarm within the open pit. Veins marked in blue are mineralised. Dimension from left to right: 3 m

O Saloro

Figure 7-5 Detailed image of a mineralised vein in the open pit.

7.3 Geological investigations

Main geological investigations are through geological mapping and drilling, undertaken by the Saloro geologists.

Some satellite image interpretation from Landsat 7 images took place to identify and characterise the structural setting.

O Saloro

8 DEPOSIT TYPE

The Barruecopardo deposit is interpreted as a sheeted vein system deposit, with its veins being filled after hydraulic fracturing during the orogenic phases.

The predominant orientation of the subvertical mineralised veins is NNE 10-15o, which corresponds to the main stress orientation during the variscan and later the alpine orogeny.

An important role on the system and deposit type has a certain intensity of greizenization in proximity of the mineralised veins.

Figure 8-1 Barruecopardo northern pit wall with subvertical vein swarms and/or fractures (lower picture interpreted)

9 EXPLORATION

Exploration activity is not discussed in detail this report. Nevertheless, exploration has been taken place in form of surface mapping in the prospective northern and southern extensions of the Barruecopardo deposit.

As a result, one DD hole has been targeted in the south extension of the deposit (BD048) and three more into the area of its northern extension (BD045, BD046 and BD047), to serve both purposes, deposit extension drilling and exploration.

All of them showed mineralised intercepts at various levels.

10 DRILLING

In this report it is referred to all diamond drill holes (DD), and all reverse circulation drill holes (RC) drilled by Saloro since 2006 and until May 2023, being the latest holes drilled so far.

Specific QAQC procedures and protocols are in place and followed by Saloro personal concerning drilling, logging, sampling and data entry, and can be reviewed in several internal documents such as "QAQC Protocol Saloro 2019" or "Core Drilling May 2021". Those are discussed throughout the following chapters.

10.1 Drilling Methods

Two drilling methods are used, Diamond drilling (DD) and Reverse Circulation drilling (RC).

10.1.1 Diamond drilling

Diamond drilling, with wireline core retrieval. Predominant core diameter is HQ (63.5 mm nominal core diameter. Occasionally PQ diameter 85 mm has been used to drill the top hole.

10.1.2 Reverse Circulation drilling

Reverse Circulation (RC) drilling was employed for grade control precision drilling, using suitably sized compressors in combination with a 140 mm diameter face sampling hammer.

10.2 Drill sample Recovery

Saloro DD typically recorded overall core recoveries in excess of 90%, which is considered acceptable.

Saloro RC drill samples are collected over $1 m$ intervals through a cyclone. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Individual sample bags are not weighed to assess sample recovery, but a visual inspection is made by the Company geologist to ensure all samples are of approximately equivalent size. All inspections for recovery are considered as appropriate.

10.3 Location of Data

All planned drillholes are marked using a differential GPS by the Saloro internal surveyor, with millimetric precision. Once drilled, the holes are resurveyed. Those coordinates are entered into the drillhole database. Coordinate projection and datum is ETRS89, UTM29N.

All diamond drill holes are systematically being logged using a downhole deviation probe equipped with a Gyro (Reflex). The hole path is imported into the database and used during the interpretation of the deposit.

Most RC holes are short holes with an average depth of 40-50 and considered to not divert from the planed trajectory. In some cases, RC holes were drilled to deeper depth, with a maximum of 120 m within the open pit area.

For this estimation long RC holes have been compared with nearby DD holes and an acceptable fit of mineralised intercepts between both has been observed. Nevertheless, in the future all drill hole deviations (RC and DD) should be logged.

10.4 Logging

10.5 Drill Core logging

Once stored in the core box, the drill core is taken to the core shed on site, where it is photographed (dry and wet) and geologically logged.

Detailed logging procedures are in place with RQD and recoveries being logged first, followed by the identification of Scheelite with the help of a handheld UV lamp and finally geological and structural logging.

For the geology log the following features are recorded: lithology, alterations, mineralization, structures and paying special attention for the presence of quartz veins. For those position, relative angle in respect to the drill core axis, and their thickness is recorded. In addition, observations of sulphides are annotated.

10.6 Reverse Circulation logging

The approximately 40kg sample recovered from the RC rig is collected in large plastic bags, which are then run through a three-stage riffle splitter to obtain a representative $4-5 \mathrm{~kg}$ split of the original sample.

This split sample is taken to the core shed, where it is further split to achieve a 1 kg sample which is used in case the interval is identified as possibly mineralised.

This identification process uses the remaining 4 kg from which a small portion is being sieved and analysed geologically, for abundant quartz and using the UV light lamp. All observations are noted in the geological log for this sample.

10.7 Data Spacing and Distribution

DD hole spacing is 35 to 50 m . The RC holes are spaced 10 m , on 50 m lines. The diamond holes added since May 2021have been targeted to fill eventually existing gaps and better inform the deeper sections of the deposit.

10.8 Orientation of data in relation to Geological Structures

All drillholes are oriented and inclined to cut the mineralised structures in a perpendicular way. Main drill orientation is 2850 NW , if drilled from the eastern rim of the open pit, and 1050SE for the holes drilled from its western side.

11 SAMPLE PREPARATION AND ANALYSIS

11.1 Sampling Techniques

Designation of sample intervals is visual from drill core following geological aspects and with help of UV light in the core shed, to detect the fluorescent tungsten mineral scheelite.

Sample intervals of 1 m are preferred, except in cases where geological reasons support the need for shorter sample intervals.

The selected intervals are cut into half core and sent for analysis to the internal lab, where they are prepared for pressed powder pellet XRF analysis.

RC samples are fixed 1 m chip samples split once at the rig, through a three-stage riffle splitter, where a $4-5 \mathrm{~kg}$ sample is achieved. This sample is taken into the core shed, where it is split again to achieve a $0.8-1 \mathrm{~kg}$ subsample. The remaining part is analysed under UV light for the presence of scheelite and geologically for abundant quartz, originating from veining. In case of fluorescence or detection of quartz, the corresponding $0.8-1 \mathrm{~kg}$ sample is selected for analysis.

11.2 Subsampling techniques

Once received in the internal lab, the drill core or selected RC sample is crushed and pulverised to 80% passing $75 \mu \mathrm{~m}$.

11.3 QAQC of subsampling stages

QAQC samples have been added to the sample chain at a frequency of approximately 15%. Those include blanks, standards, and duplicates.

11.4 Sample security

Saloro has developed strict protocols to ensure sample security. These are well documented, and staff is trained and supervise at all stages of the work. Samples are transported from the drill site by company vehicle to a sample preparation shed where samples are prepared to be dispatched to the internal analytical lab.

11.5 QAQC of assay stages

A QAQC protocol has been adapted by Saloro for all assay stages, which includes blanks, standards, sample duplicates and lab pulp duplicates. Results are acceptable for RC samples. DD duplicate analyses are challenging. It is interpreted that the reason for this low correlation between quarter core samples is the high nugget value, see Figure 11-1 below.

Figure 11-1 Example scheelite distribution on half core using UV light
11.5.1 Repeat Samples

Figure 11-2 QAQC quarter core sample duplicates

Figure 11-3 QAQC quarter core sample duplicates (grades $<0.2 \% \mathrm{WO}_{3}$)
Correlation of the quarter core sample duplicates is low for the totality of the samples. Due to the small number of samples not all grades are covered to generate better information. Nevertheless, the elevated nugget value is well reflected by those results, and they are thus considered as acceptable.

Saloro

Figure 11-4 RC Field Sample Duplicates
RC samples show good correlation between the sample and a duplicate sample taken from the same bag.

Future QAQC studies however shall aim to compare the sample with a true field duplicate sample, which shall be taken from the 35 kg split rejected in the field.

11.5.2 Pulp Sample Duplicates

A further QAQC step is the comparison of sample pulps, which is usually very good for both DD and RC samples, as can be observed in the two graphs below.

Figure 11-5 DD Pulp Sample Duplicates

Saloro

Figure 11-6 RC Pulp Sample Duplicates

11.5.3 Blanks

[^1]
Saloro

Figure 11-8 RC Blank Samples
DD and RC blank samples show both acceptable results with 6% and 5% respectively slightly above the detection limit of $0.002 \% \mathrm{WO}_{3}$, as communicated by the lab.

An issue on the RC samples was noted with a small number of values showing 0.003 and 0.004% WO_{3}. The XRF machine was then recalibrated, and results were acceptable again.

Single spikes as observed for the DD blanks might be explained by the need for better cleaning intervals, which was applied and solved he issue.
11.5.4 Certified Reference Material - CRM (Standards)

Figure 11-9 Certified Reference Material (CRM) over time

Saloro

Figure 11-10 Certified Reference Material (CRM) Mean Percent Difference

The Saloro lab is currently using two standards, EST1 ($0.397 \% \mathrm{WO}_{3}$) and EST2 $\left(0.876 \% \mathrm{WO}_{3}\right)$. Their behaviour is plotted above. On the graph in Figure 11-10, EST 2 shows good correlation, whereas EST1 shows elevated results by 8\% for the main part of its use.

This issue must be monitored closely and the XRF machine must be calibrated accordingly for those lower grades. This was performed by sample 50 where the calibration results for EST2 result in a better fit.

11.5.5 Umpire Samples

Figure 11-11 Umpire Samples
Umpire samples are systematically sent for check analysis to ALS Loughrea (Ireland) since the start of the 2018 RC (hole BIO023) for approximately 4\% of all samples (RC and DH).

Saloro
Results from Umpire samples indicate a very good fit for grades until $4 \% \mathrm{WO}_{3}$ and acceptable fit for higher grades. Above $4 \% \mathrm{WO}_{3}$, ALS shows slightly higher grades than Saloro. Concerned by this effect are approximately 3% of the Umpire samples and 0.2% of all composite samples.

The results are considered as good and do not indicate issues with analytical grades.

11.5.6 Quality of Pulverisation process

Finally, the lab is also monitoring the percentage of pulverised material with the aim to exceed 80%. Values from 62 DD samples and 243 RC samples oscillate both around 90% which is considered as acceptable.

11.6 Historic data

All data used for this MRE has been generated by Saloro. Earlier Saloro datasets which might not be represented on those graphs have been validated previously to importing into the Saloro drillhole database.

11.7 In situ Dry Bulk Density

After discussions with Saloro geologists a common bulk density for all rocks has been adapted from the 2011 MRE, using the "Archimedes" principle on 934 individual core samples, originating from 22 drill holes well-spaced over the entire deposit. The single value used is $2.62 \mathrm{~g} / \mathrm{cm}^{3}$.

12 Verification of Sampling and Assaying

12.1 Significant intersections

No intersections have been publicly announced as Saloro SLU is a privately owned company. Table 1, nevertheless is provided with this report as Appendix A, and is accompanied with a complete table of all used intersections, as well as significant intersections included within longer intervals above $0.05 \% \mathrm{WO}_{3}$ in the Appendix C .

12.2 Twin Holes

Two twin holes have been drilled in the early stage of the development of the deposit, BAR46 with BAR46bis and BAR56 with BAR56bis.

Correlation between both is however challenging, as separation between holes is $>7 \mathrm{~m}$ at their first mineralized intercepts. Most likely this is due to the high nugget effect seen for the entire deposit during the variography and with DD hole duplicates, half and quarter core samples, see Figure 11-1.

12.3 Data management, Validation and Storage

Geological data is recorded on paper copies before it is taken into digital format (Excel spread sheets). For this MRE all available data has been imported into an Access database and validated running several protocols to detect sample overlaps, exceeding collar depth values, invalid hole id's or similar.

Assay data is validated separately before they are imported into the database (chapter 11.5).
All data is stored by Saloro on their internal system.

13 METALLURGICAL TESTING AND MINERAL PROCESSING

Metallurgical test work and mineral processing are not discussed in detail in this report.
Nevertheless, metallurgical test work has been undertaken during the FS stage and afterwards and will be outlined here in short.

13.1 Metallurgical test work

Currently ongoing test work is contracted to Wardell Armstrong International (UK) and focussed on improving recoveries.

13.2 Mineral processing

Current mineral processing is as followed: once mined, the material classified by grade (high, medium, low) is stored in stockpiles on the ROM pad. As a first step the material is run through a series of crushers for grain size reduction to $<5 \mathrm{~mm}$, before it is taken through an ore sorter (installed early 2023) which separates the non-scheelite containing material.

The selected material goes to the plant for reclassification and is preconcentrated under wet conditions into groups $<5 \mathrm{~mm}$ and $<1 \mathrm{~mm}$.

Following is a gravimetric separation. The dense particles are run through cyclones. The fines get into a flotation circuit, the larger particles are introduced into the spiral separator.

At that stage any deleterious elements such as $A s, P$ and S are eliminated from the circuit through flotation and magnetic separation.

The result is the final concentrate, which will now be stored in big packs for sale into the market.

14 ESTIMATION AND REPORTING OF MINERAL RESOURCES

The MRE for the Barruecopardo deposit has been reported based on the guidelines defined in the JORC code (2012 edition). The MRE has been classified as a Measured, Indicated and Inferred Mineral Resource of 24.4 Mt at an average grade of $0.195 \% \mathrm{WO}_{3}$.

Category	Tonnes $\mathbf{(M t)}$	Grade $\left(\mathbf{W O}_{\mathbf{3}} \mathbf{\%}\right)$	Contained Metal $\mathbf{(\mathbf { t }} \mathbf{\text { of } \mathbf { W O } _ { \mathbf { 3 } } \mathbf {) }}$
Measured	10.05	0.191	19,204
Indicated	10.46	0.174	18,200
Inferred	3.86	0.259	9,993
Grand Total	$\mathbf{2 4 . 3 7}$	$\mathbf{0 . 1 9 5}$	$\mathbf{4 7 , 5 2 7}$

Table 14-1 Barruecopardo Mineral Resource Estimate as of $9^{\text {th }}$ November 2023 (The MRE is reported using a 0.05\% WO_{3} cut-off grade. All values are rounded to reflect confidence levels in the estimate.)

For this resource estimation and with the aim to upgrade the deposit, all RC holes and all DD holes drilled by Saloro since 2006 have been used. Special attention was given to the DD holes drilled since May 2022. These aimed to fill existing gaps or extend known mineralisation in the upper part of the deposit and to better inform the deeper areas of the Barruecopardo prospect.

Mineralised vein swarms have been observed to be very consistent in their orientation (NNESSW) and their steep dipping nature of 80-85o towards the ESE. To raise confidence into those observations from surface, it was important to intercept individual veins, repeatedly at various levels. This objective was achieved with the 2022-23 DD campaign, where most holes were drilled from the western rim of the mine towards deeper depth below the current open pit and intercepting vein swarms that were observed, drilled, and analysed in the upper sections.

The Barruecopardo deposit has been estimated in various occasions. The latest technical report and MRE in accordance with the JORC Code (2004 edition) was undertaken by CSA Global in 2012. The estimation concluded 27 Mt at a grade of $0.26 \% \mathrm{WO}_{3}\left(\mathrm{COG} 0.05 \% \mathrm{WO}_{3}\right.$) and 72 kt contained metal, with slightly smaller extension, less depth of investigation and significant distance between holes in some areas, compared to this 2023 MRE.

14.1 Data Integrity

All geological and chemical data, as well as collar coordinates and drill hole deviations have been validated for this MRE. The entire DD and RC dataset is considered to be of good quality and has been used for this estimation.

All data used for this MRE has been supplied by Saloro. Some new drillhole data originates from the 13 diamond holes drilled since May 2022. The topography used for this estimation is the latest topography from June 2023.

From this initial information 4 individual wireframes have been built in which the estimation was run. In contrast to earlier MRE, interpretation of those wireframes is significantly wider, allowing internal waste between the mineralised vein swarms. Reason for this is the continued issue where internal waste cannot be separated for the SMU of $6 \times 6 \times 5 \mathrm{~m}$. Within those wider wireframes the mineralisation is controlled through well-defined parameters of the ordinary kriging process, acting as soft boundaries. The known sharp mineralisation is limited amongst other parameters through tighter search ellipsoids, the number of used samples and drill holes.

Saloro

All parameters used to control the estimation process will be mentioned later in this chapter.

14.2 Database

All drillhole data has been received in Excel format, was validated before being imported into an Access database and linked to the modelling software (Geovia Surpac).

For the Mineral Resource Estimation (MRE) into a block model, the following data in form of Excel tables have been received: collar, survey, assay, lithology, structures, density, geotech and weathering.

For the construction of the wireframes, composites and the MRE both diamond drill holes and RC drill holes have been used. This is new, where previously exclusively the DD data has been used for resource estimation and likewise only the RC data for the Barruecopardo grade control model. A breakup of those drillholes, samples and the time they were drilled is tabulated below (Table 14-2).

hole type	no. of holes	metres drilled	av. depth	no. of samples	areas drilled	year drilled
DDH	57	$11,033.05$	194	6,066	all	$2006-2007-2008$
DDH	33	$7,716.80$	234	1,353	all	$2010-2011-2012-$ 2015
RC	378	$17,456.00$	46	11,662	$1-2-3-4-5$	$2018-2019-2020$
DDH	27	451.25	17	468	1	$2019-2020$
DDH	13	$4,013.90$	309	1,578	6	$2021-2022$
DDH	13	$4,772.40$	367	1,510	6 and 7	$2022-2023$
Total general	521	$45,443.40$	$276 *$	23,637		

Table 14-2 Drillhole statistics (*av. depth calculated only for DD holes and excluding 2021-22 short holes)
The first two DD hole campaigns aimed to classify the entire deposit with a first MRE in 2012. In 2018 it was decided to populate the Grade Control model with high quality precision RC drill data.

In 2019 a DD drill campaign with 26 short holes and one deeper hole was planned and executed to acquire more structural knowledge. In parallel a surface trenching study gave more insights on this issue.

The following two DD drill campaigns had the objective to fill in existing gaps which impeded higher resource classifications in those areas so far, as well as investigate resource potential at depth, as many of them targeted levels down to 300 m RL.

As for RC, most DD sample intervals falling within the previously interpreted wireframes are 1 m of length (Figure 14-1). This will therefore be used as compositing interval for a first estimation and analysed geostatistically. The final MRE and object of this report is done using 5 m composite samples. Reason for that is the technical imitation to exploit very small veins, which must include barren areas. In the past those areas of inevitable "geological dilution" reduced the final grades in the plant by 30%. Aim with this MRE and 5 m composite samples is to better adjust operational resource grades to the final product, taking into account a significant drop in grade for the estimated resource update.

Figure 14-1 Frequency of sample intervals falling within the 9 wireframes
Considering geostatistical issues, 5 m composite samples are less representative for geostatistical analysis than the original 1 m samples. For that reason, both 1 m and 5 m composite samples have been analysed in terms of tungsten grades.

The following tables show the different tungsten grades (max and mean) per domain for 1 m and 5 m composite samples. Grades are weighted grades. No significant reduction is expected nor seen. However, worthwhile to be mentioned, the maximum grades per domain were reduced significantly for the 5 m samples (right), which is important during the estimation process.

Domain	$\mathbf{1 m}$ comps	max $\%_{W O}^{3}$	mean $\%_{W O}^{3}$
1	217	1.218	0.039
2	1,150	6.207	0.054
3	303	3.531	0.073
4	6,246	11.829	0.156
5	2,740	10.000	0.108
6	240	6.356	0.082
7	123	3.506	0.125
8	976	16.505	0.115
9	202	5.208	0.173
Total general	12,197	16.505	0.126

Domain	$\mathbf{5 m}$ comps	max $\%_{W O}^{3}$	mean $\%_{W O}^{3}$
1	36	0.256	0.035
2	208	1.843	0.054
3	52	0.717	0.078
4	1,202	4.533	0.153
5	510	3.571	0.102
6	42	0.232	0.035
7	19	0.734	0.141
8	183	3.684	0.117
9	34	1.534	0.183
Total general	2,286	4.533	0.125

Table 14-3 Tungsten grade comparison 1m and 5m composites

Saloro

Highest grade in Domain 4 for the 1 m samples was $11.8 \% \mathrm{WO}_{3}$, where the 5 m composite grade for that interval is $4.5 \% \mathrm{WO}_{3}$. This effect is even more pronounced in Domain 8 (see also 14.5.7 Zones of Risk), where a reduction from 16.5 to $3.7 \mathrm{OWO}_{3}$ occurs. This reduction is desired, it is meant to replace any further top cutting.

14.3 Comparison RC vs. DD samples

For this MRE all available samples RC and DD samples have been used. This is different to earlier estimations, where for the resource model only DD holes were used and for the grade control model only the RC sample data was used. To validate this step, both datasets have been analysed before compositing to 5 m composites.

All samples	DDH\&RC	only DDH	only RC
mean	0.126	0.152	0.099
error	0.005	0.008	0.005
standard deviation	0.53	0.64	0.38
sample variance	0.28	0.41	0.14
curtosis	214	162	278
coeff. of asymmetry	12.07	10.64	13.43
min	0.000	0.000	0.000
max	16.505	16.505	10.574
no. of samples	12197	6287	5910
confidence level (95\%)	0.009	0.016	0.010

Table 14-4 Basic statistics DDH and RC initial 1m samples

DDH samples	DDH_D1	DDH_D2	DDH_D3	DDH_D4	DDH_D5	DDH_D6	DDH_D7	DDH_D8	DDH_D9
mean	0.049	0.083	0.098	0.175	0.149	0.093	0.133	0.173	0.193
error	0.014	0.016	0.026	0.012	0.018	0.034	0.042	0.043	0.055
standard deviation	0.17	0.40	0.35	0.64	0.66	0.50	0.45	0.96	0.74
sample variance	0.03	0.16	0.12	0.40	0.43	0.25	0.20	0.93	0.54
curtosis	32	158	58	114	106	121	35	184	32
coeff. of asymmetry	5.47	11.46	6.97	9.07	9.28	10.28	5.57	12.38	5.47
min	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
max	1.218	6.207	3.531	11.829	10.000	6.356	3.506	16.505	5.208
no. of samples	144	624	187	2938	1380	211	115	508	180
confidence level (95\%)	0.028	0.031	0.051	0.023	0.035	0.068	0.083	0.084	0.108

Table 14-5 Basic DD 1m sample domain statistics

RC samples	RC_D1	RC_D2	RC_D3	RC_D4	RC_D5	RC_D6	RC_D7	RC_D8	RC_D9
mean	0.019	0.019	0.034	0.138	0.066	0.005	0.002	0.053	0.010
error	0.007	0.004	0.011	0.008	0.006	0.001	0.000	0.009	0.003
standard deviation	0.06	0.08	0.12	0.47	0.23	0.01	0.00	0.19	0.01
sample variance	0.00	0.01	0.01	0.22	0.06	0.00	0.00	0.04	0.00
curtosis	29	78	72	197	137	7	7	51	3
coeff. of asymmetry	5.18	8.36	7.94	11.58	10.05	2.72	-2.63	6.55	1.99
min	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000
max	0.395	0.909	1.189	10.574	4.036	0.028	0.002	1.931	0.052

no. of samples	73	526	116	3308	1360	29	8	468	22
confidence level (95\%)	0.014	0.007	0.022	0.016	0.012	0.002	0.001	0.017	0.006

Table 14-6 Basic RC 1m sample domain statistics
To be noted on the RC statistics, the purpous of RC drilling was for grade control, it only took place in certain areas and in the upper 50 m of the deposit. This is the reason why some domains only show little sample density and/or very low mean grades (domains 6,7,9).

Figure 14-2 Tungsten grade histogram DDH samples

Figure 14-3 Tungsten grade histogram RC samples

Saloro

Figure 14-4 Tungsten grade histogram DDH samples Domain 4

Figure 14-5 Tungsten grade histogram RC samples Domain 4)
Analysing the data individually and any of the 9 modelled volumes (domain 1-9), it was observed that both datasets correlate very well with each other and are therefore considered valid to be used as a whole, to estimate the Barruecopardo resource model.

This can also lead to the assumption that the RC data, which, for the nature of its extension, only covers the upper part of the deposit compares well to the lower part of the deposit, which is populated exclusively by DD hole data.

14.4 Drill hole and Modelling Extensions

As a reference for drill holes and modelling, the latest topography is used, dating June 2023. The thirteen holes drilled since May 2022 had maximum depths of up to 474 m , extending to a total vertical depth of 300 m RL. This enabled to better explore areas that only had little information previously.

Figure 14-6 Long section SSW-NNE with current topography showing open pit and drill holes (z exaggerated by 1.5)

14.5 Estimation and Modelling Techniques

14.5.1 Topography

As a base for topography, the inhouse generated drone-based topography, dated June 2023 was used. Resolution is down to centimetric. Coordinate projection and datum is ETRS89, UTM29N.

14.5.2 Wireframes

Wireframes have been constructed using the chemical data from the diamond drill holes and the RC holes that where initially drilled for grade control. Lower limit for a sample to be included into a wireframe was $0.04 \% \mathrm{WO}_{3}$, allowing internal but no external wate. A total of nine individual and well-defined wireframes have been constructed around the geological information and respecting 5 m composite sample intervals.

Apart from domains 4 and 5, which include more massive mineralisation and some internal waste, the other domains are narrow, likewise respecting the 5 m composite length and an SMU of $6 \times 6 \times 5 \mathrm{~m}$.

O Saloro

Figure 14-7 Modelled mineralised wireframes Domain 1 to 9 (oriented North)
After interpretation of the geological and chemical dataset, nine individual wireframes have been modelled, six of them on the eastern side of the deposit where the tungsten mineralisation
is closely controlled along strike at 150 NNE (domains 1 , to 6) and three in direction 100 NNE for the western wireframes, (domains 7 to 9).

All veins enclosed in those volumes steeply dip towards the ESE.

Figure 14-8 The Barruecopardo open pit mine with drill holes (May 2023) and mineralised domains (November 2023)
Both strike and dip of those wireframes have been confirmed from pit wall observations as well as during continued field studies with advanced mining operations over the years, such as the trenching study done in 2019 in the northern part of the active pit. Likewise, from the downhole geophysical study, using an acoustic televiewer and from variogram modelling, performed during the different MRE exercises.

Domain wireframes were taken down to depths of 300 m RL, including the drillholes that targeted those areas. Nevertheless, the deeper levels are poorly informed and for the moment do rarely exceed Inferred categories for this reason.

With the modified way of building the wirefames during this MRE, the soft boundaries are given more weight than before, where the estimation was mainly restricted through hard boundaries in form of tight wireframes.

All wireframes have been taken another 10 m along strike, beyond the last sample to terminate the interpretation.

Figure 14-9 Mineralised interval
Slightly over 90% of the mineralised intercepts ($>=0.05 \% \mathrm{WO}_{3}$) that fall within the wireframed volumes (domains 1-9), are between 1 to 6 meters of length. This is coherent with the width of the search ellipse of the first estimation pass (Figure 14-9Table 14-10) and in line with the SMU.

14.5.3 Composites

Upon client request, the initial sample composite length of 1 m was taken to 5 m composites for the MRE. Reason for that was mainly the operational aspect, where it is not possible to mine very thin vein swarms as they occur in Barruecopardo, but rather include those into larger intervals. By doing so, even isolated veins have been integrated into a sample length of 5 m , allowing for internal waste if weighted composite grades remain above a nominal minimum grade of $0.05 \% \mathrm{WO}_{3}$.

Challenging with this approach is the geostatistical analysis, due to a smoothing effect over such intervals. To overcome this issue, most of the geostatistical work was done on the initial 1 m samples and findings where then applied to the final work.

With the smoothing effect through 5 m compositing, no further top cutting has been applied to the composited 5 m sample population, where the overall grade was almost identical for both populations but individual 5 m composite grades were reduced significantly (see Table 14-3)

14.5.4 Block Model

The model is a rotated block model, aligning along with the main orientation of the mineralised vein swarms which is 150 NNE. The rotation is applied around the y axis to minimise any dilution which might occur through misalignment between mineralisation and blocks.

The extension of the block model is approximately 1800 m in NNE-SSW direction and 800 m across strike in WNW-ESE direction. Vertical extension is between 755 m and 300 m RL.

Type	$\mathrm{y}($ ETRS $)$	$\mathrm{x}(\mathrm{ETRS})$	$\mathrm{z}(\mathrm{RL})$
Minimum Coordinates	4546414	695564	300
Maximum Coordinates	4548178	696386	755
User Block Size	6	6	5
Min. Block Size	1.5	1.5	5
Rotation	15	0	0

Table 14-7 Block Model Extensions
The final model is populated with the following attributes per block:

Attribute name	Type	Decimals	Background	Description
as	Float	3	0.005	Arsenic grade (\%) from ID 2 estimation
class	Integer	-	9	1=measured, 2=indicated, 3=inferred, 9=not classified
density	Float	2	0	Density constant of 2.62 g/cm3
domain	Integer	-	0	Estimation domain / wireframe
p	Float	3	0.004	Phosphorus grade (\%) from ID ${ }^{2}$ estimation
pass	Integer	-	0	Ordinary Kriging Estimation Pass 1,2,3
s	Float	3	0.005	Sulphur grade (\%) from ID² estimation
wo3	Float	3	0.002	Tungsten oxide grade (\%) from OK estimation

Table 14-8 Block model attributes

14.5.5 Domain Statistics

Assay data from all 9 domains was extracted individually and analysed statistically. Those values are displayed in the table below. In reference to 14.3 (Comparison RC vs. DD samples), the data has been analysed individually and as a hole for the 1 m and 5 m composites.

To be mentioned are:

- Average grade per domain and as a hole is significantly lower than in previous MRE, as the process of differentiation of the mineralised vein swarms is meant to be controlled further down the line through tight soft boundaries (search ellipse) within the domains.
- Curtosis is indicating the "peakiness/flatness" of the distribution of the dataset. With all unsampled intercepts set to background value (0.002% WO3), this value has increased.
- Coefficient of asymmetry (skewness) is elevated for the same reason as Curtosis. Over 90% of the data within the domain wireframes are below $0.2 \% \mathrm{WO}_{3}$, the dataset has a strong positive skewness.
- The 5 m composites used for the estimation are smoothening out the samples to a point, where no further top cut has been applied (see as well 14.6.2). This new approach was requested by the client's chief geologist. As geostatistically the 1 m samples are more representative than the 5 m composites, most of the geostatistical analysis was done on the 1 m composites. Findings where then applied to the 5 m estimation.

Domain 4 has been selected as a base for the estimation and variogram modelling due to its larger sample distribution and for being statistically most representative for the rest of the deposit. The other domains show more irregular distributions or have a smaller number of samples available, which makes the statistical analysis less representative.

1m vs. 5m comps	1m composites		5m composites	
	all domains	domain 4	all domains	domain 4
mean	0.126	0.156	0.125	0.153
error	0.005	0.007	0.006	0.009
standard deviation	0.53	0.56	0.28	0.30
sample variance	0.28	0.31	0.08	0.09
curtosis	214	147	59	49
coeff. of asymmetry	12.07	10.19	6.18	5.49
min	0.00	0.00	0.00	0.00
max	16.51	11.83	4.53	4.53
no. of samples	12197	6246	2286	1202
confidence level (95\%)	0.009	0.014	0.012	0.017

Table 14-9 Basic sample composite statistics

Figure 14-10 Sample composite grade distribution (all domains)

Saloro

Figure 14-11 $5 m$ composite sample grade distribution (selected domains)
The histogram plots for the individual domains $2,4,5,8$ and 9 are very much comparable to each other, all showing a main population, positive skew until grades of approximately $1 \% \mathrm{WO}_{3}$ and a second population between 1 and $3 \% \mathrm{WO}_{3}$.

Domains 1, 3, 6 and 7 are poorly populated, but also confirm the previously described distribution to a certain point. Figure 14-11 shows two examples of each group.

14.5.6 Kriging neighbourhood analysis KNA

With the objective to best define the estimation parameters, a kriging neighbourhood analysis using the 1 m composites for their better geostatistical representation has been performed, testing different estimation parameters. As the deposit has been estimated and analysed multiple times before, some of the previously parameters have been adapted from earlier estimation processes, or due to general agreements, such as parent block size. The quality indicators, kriging efficiency (KE) and the conditional bias slope (CBS) have been used to determine optimum values.

Significant for new estimations with more samples available and different drill spacing is the number of samples to be used to estimate one block. Too many samples for one block will result in excessive smoothing of the block grades, resulting in an artificially homogenous model. Too little samples per block will result in poor kriging efficiencies and non-representative estimates.

The two main parameters that have been tested is the minimum/maximum number of samples and the dimension of the search ellipsoid, which is defined by the range of the model. Further tested were maximum samples per hole, maximum vertical distance, discretisation points and sub block size.

Then, those preferred parameters have been applied to the final estimation using the 5 m composite samples.

Saloro

14.5.6.1 Search distance

For the search distance, Figure 14-12 indicates that below a certain number of samples both quality indicators kriging efficiency and slope regression drop below acceptable values. This critical point is at approximately 30 m . A search distance of 50 m for the first pass has been chosen, through the search neighbourhood analysing and variography. The second pass, a search distance of 100 m has been assigned and 160 m for the third pass.

For larger search distances grades will suffer excessive smoothing and grades will not be representative on a local scale.

Maximum Search Distance Analysis (6x6x5 block size)

Figure 14-12 KNA: Search Distance

Saloro

14.5.6.2 Min-max number of samples

The number of samples to be used for the estimation of one block is critical as it is closely related to the accuracy of the model. Little samples will well define the blocks at short distance to the sample but will extrapolate those grades into areas where they might not be representative anymore. Too many samples will have an excessive smoothing effect and the kriging will not be selective.

In the case of the current dataset a significant decrease of both quality indicators KE and CBS can be remarked, once numbers decrease below 12 samples. Less than 8 samples are unrepresentative, both referring to 1 m composites.

Minimum-Maximum Number of Samples Analysis ($6 \times 6 \times 5$ block size)

Figure 14-13 KNA: Number of min/max samples
A maximum number of 30 ($1^{\text {st }}$ pass) and a minimum number of 8 samples ($3^{\text {rd }}$ pass) was chosen. Those values applied to the 5 m composite samples reflected a maximum of 6 and a minimum of 2 for the respective estimation passes. The maximum number of six 5 m composites includes the same number of original samples as the 1 m composites.
14.5.6.3 Maximum allowed samples per hole

Number of Samples Per Hole Analysis (6x6x5 block size)

Figure 14-14 KNA: Number of samples per hole
For the 5 m composites a maximum of 2 composites per hole was applied, to allow for more distant drill holes to be included into the estimation of one single block.

14.5.6.4 Maximal vertical distance

The maximal vertical distance parameter allows the rejection of a data point if it is too far away vertically from the block to be estimated, to provide a meaningful estimation.

In conjunction with the downhole variogram, value of 25 m has been chosen for the first pass. Second and third pass are restricted to 35 m and 45 m respectively.

Maximum allowed vertical distance to the block estimated (6x6x5 block size)

Figure 14-15 KNA: Maximum vertical search distance
14.5.6.5 Discretisation points

Discretisation Points Analysis
(6x6x5 block size, 90m search)

Figure 14-16 KNA: discretisation points
Discretisation points are points that are evenly distributed through the block to provide targets for estimation and will then be averaged to provide an estimate for the entire block.

The number of 4 discretisation points per block has been selected.

14.5.6.6 Block Size

Block size has always been predefined from earlier estimation with $6 \times 6 \times 5 \mathrm{~m}(x-y-z)$, being the SMU size (selective mining unit) allowing maximum sub-blocking down to $0.75 \times 0.75 \times 5 \mathrm{~m}-$ practically meaning 3 divisions of the original block for x and for y. No sub blocking is allowed in vertical direction (z).

This minimum block size is considered to be too small, as with the compared large drill spacing from the diamond holes, a false impression of selectivity can be transmitted. Nearby blocks may show very similar grades, resulting in a smooth model.

Another negative effect of estimating grades into very small blocks can be that the quality indicators kriging efficiency and conditional bias slope report incorrectly due to an effect of volume variance. The main reason, such small blocks are considered acceptable is that the tight wireframes would not be represented with larger blocks. With the new wireframes used in this estimation this is not necessary anymore, as 5 m composites define the minimum with.

For this reason, the smallest allowed sub-blocking size for this estimation has been set to $1.5 \times 1.5 \times 5 \mathrm{~m}$, only permitting two divisions from the original 6 m blocks. Vertical extension is unchanged during sub-blocking.

14.5.6.7 Resuming KNA

Search distance is closely related to variography, 50 m on the major axis allows samples from two drilling lines for the first pass, which is representative on a small scale (drillhole) but takes into account the slightly distant samples as well and gives an equilibrated representative value for each block. Semi-major and minor axis are 42 m and 6.3 m respectively.

Minimum/maximum 5m composite samples to estimate one block on the first pass have been set between 4 and 6 samples, to assure good equilibrium between a too "nervous" estimation and eventual over smoothing, allowing too many samples.

Maximum number of samples per hole is 6 .
A maximum vertical search distance of 25 m for the first runs has been determined best.
Discrimination points have been set to $4 \times 4 \times 4$ points per block.

14.5.7 Zones of Risk

The resulting block model aims to best present reality but is always a model of a current status of the mine. Therefor certain risks and limitations need to be considered, such as:

- Principal zone of risk are areas populated during the third run. Due to a larger distance to less samples, confidence into those areas is lower. This concerns especially the deeper areas where little information and chemical data is available.
- One of those areas is the deeper northern part of domain 8, where a well mineralised area was estimated on the third pass. Blocks are however supported by the minimum value of all requested parameters.
- Zones of risk are as well areas that have not been integrated by a search ellipsoid, although they form part of a wireframe. In this case they have not been populated. Those areas will remain flagged only with background values, but no "pass" attribute ($\left.1^{\text {st }}, 2^{\text {nd }} 3^{\text {rd }}\right)$ will be written into the respective block. This may occur although those blocks may fall into a classified area ("class" attribute) and need to be treated carefully, as grades might not be projected to surface. This effect is also mentioned in chapter 14.10.4 below. Solution to this issue is drilling or the enlargement of the $3^{\text {rd }}$ pass ellipsoids. To overcome this effect, the concerned areas have been flagged " 9 " in the class attribute.

14.6 Mineral Resource Estimation Method

The software package used to perform this resource estimation is Surpac Geovia.
The model has been built to include all DD and RC drill holes in proximity of the Barruecopardo open pit operation and within its mining concession. The model is a rotated block model, to line up with the direction of the mineralised vain swarms, striking at 150 NNE. Parent block size is $6 x 6 x 5 m(x-y-z)$, allowing two times sub blocking in x and y direction, for a maximum resolution of $1.5 \times 1.5 \times 5 \mathrm{~m}$ subblocks.

Tungsten was interpolated using ordinary kriging (OK) in a three-pass estimation process, with an ellipsoid opening after every pass, to include a larger volume within every individual mineralised wireframe. A background value of $0.002 \% \mathrm{WO}_{3}$ has been assigned to all blocks below surface as a "waste rock" value, before the estimation.

Saloro

The composite grades have been analysed individually by domain. No top cut value has been applied to the composites. This change in methodology is mainly due to the fact that for this estimation, 5 m composites have been used, instead of 1 m composites previously. As grades are smoothed out during the compositing process from 1 m to 5 m and including barren areas, no further cut in grade is being applied. This is discussed in more detail in chapter 14.6.2.

To define the final estimation parameters, the composites have been analysed. Results are discussed in (14.6.3).

14.6.1 Deleterious Elements

The three deleterious elements As, P and S have been estimated separately using an Inverse Distance Squared single pass estimation process (ID ${ }^{2}$. For those elements the initial background values for the model are: As=0.005\%, $\mathrm{P}=0.004 \%, \mathrm{~S}=0.005 \%$.

Same as for the tungsten, no top cut has been applied.
For phosphorous, two populations have been observed. A first one showing a peak value at approximately 0.06% and a second peak around a value of 0.15% P. This effect was not further analysed but could be a second population and might give some useful information if investigated, prior to a future resource update.

Figure 14-17 Histogram plot Phosphorous - two populations

14.6.2 Top Cut

The aim of top cutting is to "adjust" the composite samples in a way that the result of the resource estimation will be as close as possible to reality. An elevated nugget value with isolated high-grade outliers tend to push grades into poorly informed regions. This may lead to overestimation if not addressed.

Neither too serious top cutting, nor no top cutting in such deposits is desirable. Excessive cutting will result in averaging out all grades which likewise is undesired. Historic reconciliation and the experience made over time is a good indication for top cuts. Therefore, discussions have been held with Saloro personnel concerning reconciliation with the different models in use over time.

An analysis of high grade outliers has been undertaken between RC and DD holes. No big difference between both has been observed.

Due to the nature of the narrow mineralised veins, it was however decided for this estimation to change the compositing process from the usual 1 m composites to 5 m composite samples, within the predefined hard boundary wireframes. This change allows high grade samples to include low grade samples or even barren material into a continuous 5 m interval, as long as the average value does not fall below $0.05 \% \mathrm{WO}_{3}$.

Reason for that is SMU dimension and the general ability to not mine intercepts narrower than 5 m - an operational decision, based on geological observations.

Where previously top cuts of 6% or $8 \% \mathrm{WO}_{3}$ have been applied, a significant reduction in high grades has been observed, when using the 5 m composites instead of the original 1 m samples. Due to that effect, no additional top cutting has been applied to the 5 m composite dataset.
14.6.3 Definition of ordinary kriging parameters

The mineralisation process is considered the result of the same event and showing geostatistical similarities between domains. Nevertheless, all nine domains have been analysed individually.

Figure 14-18 Barruecopardo open pit mine - wireframes

Saloro

The orientation of the search ellipse is defined by the predominant orientation of the mineralised layers which is 150 NNE for domains 1 to 6 . Domains 7 to 9 show a slight difference in orientation with a general strike of 100 NNE. This has been respected for the search ellipse orientation during the OK runs and the ID^{2} estimation for the deleterious elements As, P and S .

Both areas dip towards the ESE at 105 and 100 $\mathbf{0}$ respectively and are subvertical steeply dipping 80-85ㅇ.

With the information from all this preparatory work, it has been decided to use the following parameters for the ordinary kriging 3-pass estimation:

Barruecopardo ordinary kriging estimation parameters November 2023		ID² estimation $^{\|c\|}$ Parameters (1st/2nd/3rd pass)	Domains 1 to 6
Domains 7 to 9	all domains		
Minimum composite samples to estimate one block	$4 / 3 / 2$	$4 / 3 / 2$	2
Maximum composite samples to estimate one block	$6 / 5 / 4$	$6 / 5 / 4$	6
Search ellipse Major Range (m)	$50 / 100 / 160$	$50 / 100 / 160$	160
Search ellipse Semimajor Range (m)	$42 / 83 / 133$	$42 / 83 / 133$	133
Search ellipse Minor Range (m)	$6.3 / 6.3 / 6.7$	$6.3 / 6.3 / 6.7$	6.7
Max composite samples per hole	2	2	2
Max vertical distance to sample	$25 / 35 / 45$	$25 / 35 / 45$	45
Search ellipse bearing Major (degrees)	15	10	$15 / 10$
Search ellipse plunge (degrees) towards SSW	5	5	5
Search ellipse dip (degrees)	-85	-85	-85
Discretisation points			
Table 14-10 Search ellipse parameters by run and domain OK and ID²	$4 / 4 / 4$	4	

14.6.4 Variography

To confirm the dimension of the search ellipse, the range of the model, as well as to evaluate the nugget effect, the samples have been analysed through variography in all three directions x , y and z, corresponding to the major, semi-major and the minor axis.

Normal score variograms have been modelled and the results are tabulated below. Due to the high nugget value (47\%) of the deposit and relatively low sample density across strike and down dip, the nugget value of the major axis has been used in all directions.

Variogram modelling, indicates findings from field observations such as the main direction of 15 NNE and a plunge of 5-150 towards 195 SSW. Although variography suggests a higher plunge, field observations and earlier modelling lead to considered that only a minor plunge of approximately 50 is realistic.

Axe	direction	inclination	plunge	nugget	sill	extension
mayor	$15 / 195$	0	$5(\mathrm{SSW})$	0.47	0.89	50
semi-mayor	105	-85	-			42
minor	285	5	-			6.3

Table 14-11 Variogram parameters
Although more samples are available, variogram modelling is challenging. Field observations are important to underline the decisions taken.

Figure 14-19 Variogram all three directions
Due to little samples in the third direction the variograms where challenging for the minor axis, which explains itself with the narrow veins hosting the mineralisation. An extension of 6 m is adopted.

14.6.5 Estimation process

The block model estimation takes place within the interpreted 3D wireframes, acting as hard boundaries. Outside those limits all blocks below topography have been assigned a background value of $0.002 \% \mathrm{WO}_{3}$.

The tungsten attribute $\left(\mathrm{WO}_{3}\right)$ has been estimated using a three-pass ordinary kriging process. The results of the first and second pass are considered of higher confidence in terms of available number of samples, distance between drill holes and continuity of the model. The third pass populates the more distant and less informed blocks and has therefor lower confidence. The pass number and drill spacing are important criteria when assigning measured, indicated, or inferred categories. A block without pass number assigned has not been estimated but may fall into an area which has been classified due to nearby samples.

no. pass	\% of blocks populated $\left(>0.05 \% \mathrm{WO}_{3}\right)$
$1^{\text {st }}$ pass	20%
$2^{\text {nd }}$ pass	47%
$3^{\text {rd }}$ pass	33%
Total	100%

Table 14-12 Percentages of blocks populated per estimation pass ($\operatorname{cog} 0.05 \% \mathrm{WO}_{3}$)
A block being populated during the first pass will be blocked for the following passes. In this way, a block that has not been populated during the first pass, for not complying with the required minimum parameters will be available for the next pass.

The remaining 3 elements As, P and S were estimated using a single pass with the Invers Distance method (ID ${ }^{2}$).

14.7 Classification

The choice of the appropriate category of Mineral Resource depends upon the quantity, distribution and quality of data available and the level of confidence that attaches to this data.

The current estimation of the Barruecopardo Tungsten deposit is based upon on criteria defined in the JORC Code (2012 Edition), such as:

- Confidence in the geological model
- Drillhole spacing
- Data and/or sample spacing
- Data Quality (QAQC)
- Geostatistical analysis and geostatistical indicators generated during the MRE
- Experience and lessons learned from, and in comparison with earlier MRE

14.8 Use of Geological Criteria

Geological and structural criteria is considered during the construction of the estimation wireframes. Internal structural data and findings from other studies raised confidence on the orientation of the wireframes.

14.9 Tonnage factors

Tonnage was estimated using the in situ dry bulk density value of $2.62 \mathrm{~g} / \mathrm{cm} 3$ for the entire deposit as described in chapter 11.7.

14.10 Validation of Resource Estimation

The estimation has been validated in four steps:

- Comparison of initial and final grades
- Comparison of composite and block model grade distributions (histograms)
- Looking at trends (swath plots)
- \quad Section by section (visually)

14.10.1 Comparison of input and output grades

Input is the original assay data, composited to fit the wireframes and top cut if necessary, depending on geostatistical analysis, before they are used for the estimation.

A first reduction in grade occurs when a top cut is applied to the original samples, depending on the domain they fall into. In the case of this estimation, the first reduction occurs when the samples are composited to 5 m intervals, which creates a grade smoothing on a local scale, as demonstrated in Table 14-3.

A second reduction occurs during the MRE, when a majority of lower grade composites smoothens the less abundant higher grade composites. Data displayed in the table below is from all domains. As those wireframes are built much wider than previously, they include large intercepts above the background grade of $0.002 \% \mathrm{WO}_{3}$.

all domains	no. of samples	av. grade $\left(\% \mathrm{WO}_{3}\right)$	reduction $(\%)$
1 m composites	8,314	0.1848	-
5 m composites	1,944	0.1462	-21%
blocks	320,008	0.1377	-6%

Table 14-13 Grade reduction during the estimation process (composites or blocks > background value $0.002 \% \mathrm{WO}_{3}$)
Grade reductions as they are shown in Table 14-13Table 14-13 above, are considered as acceptable. The slightly lower average values, compared with the reported resource estimation $\left(\operatorname{cog} 0.05 \% \mathrm{WO}_{3}\right)$ are interpreted as a function of the construction of the open wireframes which include many very low (background) values. The effect of grade reduction during the estimation is -6\% compared to the previous estimate from 2022 and was expected in the context of the new way of estimation (wireframes, composites, search ellipse).

14.10.2 Comparison of input and output distributions

A second mean of validating the estimation is comparing input against output values. This is assured through histogram plotting of composite grades versus block grades.

For this MRE, both curves follow each other closely, with the blocks shifted slightly towards lower values. This effect is expected and reflects the sample grade smoothing during the estimation.

The isolated outliers are reflected by the peak on the right of the plot. Those are pushed towards lower grades on the blocks as well, with the highest block grades being $2.35 \% \mathrm{WO}_{3}$. An accumulative value of 99 percentile of the blocks is achieved at a grade of approximately 0.65% WO_{3}, whereas 99 percentile of the composites are reached at $1.45 \% \mathrm{WO}_{3}$.

Figure 14-20 Composite grades vs. Block grades
For visual reasons the number of blocks has been divided by 300 to adjust scales with the composites in the histogram. Both curves follow each other well, although shifted, until grades of approximately $2.35 \% \mathrm{WO}_{3}$, where no higher block grades are estimated.

14.10.3 Swath plots

Swath plots contrast composite grades with block grades in the three directions Easting, Northing and towards Depth.

The composite curves are nervous for all three directions, although grades have been smoothed during the compositing. Most likely this effect is due to a reduced number of samples compared to the 1 m composites.

In respect, following observations can be made:

- Composite grades are above block grades - as expected
- Both curves follow each other on all three plots
- Where little samples are available (deposit edges), the curves are more nervous in comparison with areas of good sample density (centre part of the deposit)
- Main smoothing on the N-S plot. This is the direction of best continuity. Even though the nugget effect is high, grades are continuous
- Slight increase in grade towards the north. This might only be a function of lower sample density together with isolated high grade outliers
- Grade peak intensity increases with depth
- The western rim is poorly explored (low sample density), but indicates higher grades. This has to be understood as a zone of risk but as well an underexplored area with good resource potential.

For this MRE, all swath plots show good correlation between input and output values.
For tight wireframes with little internal dilution, Swath plots are expected to show composite grades slightly above the final block grades and where many composite samples are available, both curves overlay each other. This estimation has been run in wider domains such as D4 and D5, controlled by the search ellipse, and allowing for internal non mineralised zones. For the other domains this effect is happening as the wireframes are built tight and do not allow internal waste.

O Saloro

Figure 14-21 Swath plot Northing
The swath plot in north-south direction is constant in the centre part of the deposit, where a reasonable number of composite samples is available. On the edges especially the where little samples are available, the composite curve becomes "nervous", and outliers have larger influence on small sample populations, even though a top cut is applied. The estimation process smoothens this effect.

Figure 14-22 Swath plot Easting

The East-West plots tend to be relatively nervous, which indicates frequent changes of adjacent thin formations. Direction is across strike. This reflects the nature of the deposit with narrow vein swarms and intermediate barren zones. Composites do overly the block values in most cases. The spike in composite values in the very east reflects a small number of isolated highgrade samples. Taking this into account, more holes should be drilled in this aera to confirm or discard mineralisation here.

Figure 14-23 Swath plot Elevation
Composite sample grades are oscillating around grades of $0.15 \% \mathrm{WO}_{3}$, block values are smoothed indicating slightly lower grades. Below an RL of 450 m only a small number of samples is available and the curve drops off.

Samples indicate nuggety mineralisation below 400 m RL. Some outliers show important peaks on the lower end, this should be investigated through drilling.

14.10.4 Visual validation on cross sections

For the visual validation, the block model is loaded and compared section by section against the assay samples plotted along the collars. Block model grades are plotted in the same colour coding as assays. The blocks are open to allow visibility of the drillholes behind, assays are displayed as disks on the collars. Sections are open 25 m to either side.

This method allows to compare the initial values to the final estimation. It is subjective, as more than one sample point and from several holes is used to estimate one block, for this MRE 1 m samples have been composited to 5 m intervals. This method gives a quick general information on the performance of the estimation.

Saloro
It also informs in areas where little or only distant samples are available, which is the case in the deep zones where grades were projected from above. Those areas should be followed up through further drilling.

Some of these sections are illustrated below (Figure 14-25 to Figure 14-29).
On these sections the following can be noted:

- Section A: Although wireframes crosscut mineralised drillholes (wireframe east side), the adjacent blocks have not been populated due to little support from along strike drill holes. This reflects the nugget effect, where isolated mineralised samples cannot be followed up in the direction of best continuity. The more massive mineralisation (central wireframe), showing several small intercepts, which after compositing to 5 m intervals translate into continuous mineralisation but lower grades as the initial samples.
- Section B: Same effect for the E wireframe, where four drillholes do not show any mineralisation. Regarding the massive central wireframe, using a restricted search ellipsoid, this is a good example where a barren zone is flanked by mineralised intervals, resulting in a minorly mineralised corridor in the centre of the wireframe.
- Section C: Both flanking wireframes (E and W) do not take the estimation all the way to surface due to insufficient information from surrounding drillholes. This is an effect of a desired small search ellipsoid and/or too large drill spacing. Those areas have to be drilled prior to mining.
- Section D: North-Eastern part of the Barruecopardo Tungsten deposit. All mineralised vein swarms are thinning out.
- Section E: North-Western rim of the Barruecopardo Tungsten deposit, where several well mineralised intercepts have been drilled, but due to missing information/samples those cannot be projected all the way to surface. Those areas require more drilling prior to mining.

O Saloro

Legend Drill holes on topography June 2023
\oplus DDH 2006-2011
\bigoplus DDH 2012-2015
\bigoplus DDH 2019 (short holes)
\bigoplus DDH 2021-2022
\bigoplus DDH 2022-2023
\bigoplus RC

Figure 14-24 Barruecopardo open pit tungsten deposit Plan View

Figure 14-25 Section A (incl. drill hole BD040)

Figure 14-26 Section B (incl. drill hole BD042)

Figure 14-27 Section C (incl. drill hole BD052)

Figure 14-28 Section D (incl. drill hole BD045)

Figure 14-29 Section E (incl. drill hole BAR29)

Saloro

14.10.5 Geological

Comparison of assay interval results with geological aspects, structures, veins, and mineral assemblages (quartz, arsenopyrite, pyrite in combination with tungsten mineralisation) indicate good selection criteria and good correlation between each other.

Furthermore, it was studied how composite samples behave along the deposit and if those thin mineralised veinlets may be followed up along strike, especially on the deposit extensions and with emphasis on the northern extension.

For this exercise various composite lengths have been analysed, running from 2 through 5 m minimum. The longest mineralised composites (4 and 5m), admitting no internal waste were found difficult to follow through the entire deposit, whereas 3 m composites do well define the mineralised veinlets. This is not to be confounded with the new approach to estimate the deposit using 5 m composites, allowing internal waste.

In the very north, where 3 m composites could not be formed, in most of the cases, single mineralised samples could however serve to "trace" the mineralised sheets.

14.10.6 Reconciliation

From verbal communication with Saloro's Geologists it is understood that all past resource estimates have shown different degrees of overestimation, compared with the numbers from the processing plant. The aim of the current estimation is to reduce this effect.

14.10.7 Grade tonnage curves and cut off grade

Figure 14-30 presents the grade tonnage distribution for the Barruecopardo deposit, based on an increasing cut-off grade. To ensure consistent reporting a nominal cut-off grade of 0.05% WO_{3} is used for the MRE.

Saloro

14.10.8 Comparison to Previous MRE

The latest official MRE dates 2012. The current approach however is very different and it would not make sense to compare the current MRE to that initial estimation. Instead, the table below compares last year's internal MRE (bottom) and the recent MRE, which is object of this report.

Resource category	Tonnes (mt)	$\begin{gathered} \text { grade } \\ \mathrm{WO}_{3}(\%) \end{gathered}$	```contained metal WO3 (t)```	difference 2022->2023			\% of deposit
				mt	WO_{3} (\%)	contained metal (t)	
2023 MEA	10.1	0.191	19,204	7\%	-22\%	-16\%	40\%
2023 IND	10.5	0.174	18,200	-38\%	-5\%	-41\%	38\%
2023 INF	3.9	0.259	9,993	-80\%	28\%	-75\%	21\%
Grand Total 2023	24.4	0.195	47,527	-47\%	-5\%	-49\%	100\%
2022 MEA	9.4	0.244	22,928				24\%
2022 IND	16.9	0.184	31,039				33\%
2022 INF	19.6	0.203	39,810				42\%
Grand Total 2022	45.9	0.205	94,046				100\%

Table 14-14 Comparison 2023 MRE with 2022 MRE
Due to different approaches, the 2023 MRE likewise is different to all previously presented MRE. The main difference for such a decrease in tonnage and contained metal is the length of the search ellipse, which was almost cut in half upon client's request. From variography a first pass search was defined with 90 m on the mayor axis, whereas a 50 m search was applied. This "missing" volume along strike and at depth is reducing tonnage drastically.

14.10.9 Mining Factors

Based on mine processing experience and history, an economic cut-off grade of $0.05 \% \mathrm{WO}_{3}$ is being considered reasonable for the project.

14.10.10 Environmental Factors

The current environmental authorisation is based on the "Declaracion de Impacto Ambimental (DIA), published in the local governmental announcement "Boletín Oficial de Castilla y León" (BOCYL № 25, dating 6 of February 2014), ORDEN FYM/45/2014.

On $6^{\text {th }}$ of March 2021 Saloro S.L.U. applied for authorisation to modify the current tailings dump. Authorisation has been given on $15^{\text {th }}$ of November 2021.

A newly modification is planned (2023), concerning a volumetric change of the tailings damp. Authorisation has not been given yet, Saloro S.L.U. however considers all necessary authorisations in respect to this project, to be achievable.

The Barruecopardo deposit is situated within the Nature 2000 area and restrictions exist in terms of bird life protection. Saloro S.L.U. is closely working together with the responsible environmental department and respecting their regulations for ongoing operations.

No other environmental limitations are known for the Barruecopardo deposit.

Saloro

14.10.11 Mineral Resource Classification

The MRE has been classified as Measured, Indicated and Inferred Mineral Resources based on the guidelines outlined in The JORC Code (2012 Edition) and laid out in this document.

14.10.12 Relevant Factors for Classification

Material classified as Inferred Mineral Resources satisfy the following criteria:

- Quantity and grade are estimated on the basis of adequate geological evidence and sampling.
- There is sufficient sampling to be able to imply but not verify geological and grade continuity.
- Indications of sub-vertical block faulting has been observed. Offsets on blocks have been identified but are difficult to quantify, however; they are not expected to exceed 1015 m .
- The quality of the sample data is considered as adequate with 100% of the data being from Saloro's internal lab and in line with internal QAQC procedures and external Umpire analysis.

Material classified as Indicated and Measured Mineral Resources satisfy the additional criteria:

- For Measured material an approximate drill spacing not exceeding 35 mx 35 m was required.
- For Indicated material an approximate drill spacing not exceeding $50 \mathrm{~m} \times 50 \mathrm{~m}$ was required.
- Most of the remaining material within the interpreted wireframe is estimated during the third pass of the MRE and is classified as an Inferred category.
- The grade model on the base of 1 m composites contains several estimation QA/QC attributes, which are populated during the OK estimation process which can be analysed. These attributes are kriging variance, kriging efficiency, Lagrange multiplier, conditional bias slope and block variance. They were used as indicators of the confidence of the grade estimate. Findings from the 1 m composites were then used to define the model estimated using the 5 m composites, as requested by the client.

Coloured results of the classified deposit areas are shown below (Figure 14-31). The left image is a plan view and shows the lateral extension of each category, whereas the right image shows the deposit on an inclined view looking from SE towards NW. On this inclined image it is visible that the deeper areas are predominantly inferred categories due to the lower sample density and drill spacing.

Figure 14-31 Measured-Indicated-Inferred areas (left: plan view, right: rotated towards north)

14.10.13 Quality and Quantity of Data

The quality of the data is considered as good. All chemical data has been generated by the inhouse ALS laboratory including sufficient QAQC samples, which have been validated per drill campaign and as a total during this MRE.

In addition to the internal analysis, umpire samples have been sent to the external ALS laboratory (prep lab Seville, analysis Loughrea, Ireland) and showed good correlation.

The quantity of data is acceptable in the Measured and Indicated classified areas. Mainly the deeper areas will need more drilling to raise categories here but are acceptable to be classified in the Inferred category.

14.10.14 Distribution of Data

Data distribution is relatively homogeneous individually for RC and DD, with closer drill spacing and more drillholes in the upper parts of the deposit, where infill drilling for the measured resource was undertaken.

14.10.15 Geological and Mineralogical Continuity

The continuity of the mapped structures and lithologies support continuity of the tungsten mineralisation on the deposit scale. Infill drilling has demonstrated grade continuity despite elevated nugget values.

14.10.16 Competent Person Statement

The information in this report that relates to Exploration Results and Mineral Resources for the Barruecopardo Tungsten deposit is based on information compiled by Jörg Pohl, who acts as Competent Person and is a Member of the European Federation of Geologists (EFG) and holds
the European Geologist title (EurGeol \#1728). EFG is a recognised professional organisation by AusIMM and member of CRIRSCO and is included into the current list of recognized professional organisations and member institution.

Jörg Pohl is an independent mining consulting and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and likewise the 2017 Edition of the PERC standard for Reporting of Exploration Results, Mineral Resources and Reserves. Mr Pohl consents Saloro SLU to the inclusion in the report of the matters based on his information in the form and context in which it appears.

14.10.17 Forward Looking Statement and Disclaimer

Statements regarding plans with respect to the Company's mineral properties are forwardlooking statements. There can be no assurance that the Company's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that the Company will be able to confirm the presence of additional mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties.

These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy.

15 ADJACENT PROPERTIES

The subject of this report is the current MRE for Saloro's Barruecopardo prospect. Discussion of adjacent properties is outside of the scope of this report.

16 OTHER RELEVANT DATA AND INFORMATION

All relevant data and information has been provided.

17 CONCLUSION AND RECOMMENDATIONS
 Conclusions Resource update

This Mineral Resource Estimation of the Barruecopardo Tungsten Deposit is prepared in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code), 2012 Edition, and aims to replace all earlier MRE.

The entire diamond drill hole and reverse circulation drill hole data has been remodelled and estimated as a whole. Thus, the resource model counts with 143 DD drill holes and 378 RC drill holes for a total of 45,443 metres drilled and 23,637 assay samples analysed.

The new model is a rotated block model with orientation 150 NNE to align with the strike of the mineralised formation.

Block size is $6 \times 6 \times 5 \mathrm{~m}$ with a maximum sub blocking size allowed to $1.5 \times 1.5 \times 5 \mathrm{~m}$.
Nine individual wireframes have been interpreted from the geological and the geochemical dataset with a predominant strike direction of 150 (domains $1,2,3,4,6$) and 100 (domains 7 , 8 , 9).

The estimation takes place within those wireframes and below the latest available topography dating June 2023.

Samples above $0.04 \% \mathrm{WO}_{3}$ were used to define the outer boundary of each wireframe. Internal waste is accepted with this MRE, to achieve an estimation closer to what has been observed with reconciliation.

The estimation is controlled by well-defined soft boundaries through the search ellipsoids and other estimation parameters mentioned in this report.

An elevated nugget effect of approximately 50% was observed. This is consistent with former MRE's.

Average global grades have dropped by 5% from 0.205% to $0.195 \% \mathrm{WO}_{3}$. This occurs mainly due to the following reasons:

- Dilution allowed within the wireframes, mainly domains 4 and 5
- Compositing to 5 m intervals (no top cut)
- Restricted search ellipsoid (cut in half in respect to previous MRE)
- Definition/restriction of high-grade areas

Global metal content has dropped from 94 kt to 47.5 kt of metal WO_{3}. Reasons for this effect are:

- Mined material since last MRE
- Tightened search ellipsoid. Major axis extension reduced by half after client request, compared with the previous estimation dating 2022.
- Wireframes domain 4 and 5 containing more massive metal have been interpreted wider. More volume is included generating more tonnes, incrementing tonnage for blocks below $\operatorname{cog}\left(0.05 \% \mathrm{WO}_{3}\right)$
- Interpretation on 5 m composite samples allowing internal waste.

Applied QAQC procedures on the block model indicate the model is accurate and reflects the confidence level of the classification.

Modifying factors as described in the JORC Code, such as metallurgical constraints, deleterious elements, mining and processing factors, infrastructure, economic, legal, environmental social or governmental factors have not been considered specifically for this resource update.

Some of those factors like the deleterious elements, infrastructure or ongoing metallurgical test work are treated, but are not analysed in detail.

Recommendations

Bulk density measurements date from 2011. They are considered as adequate but could be refined. An approach could be to define SG for the mineralised veins individually and confirm a global value for the surrounding granites. This should be monitored in the deeper sections of the deposit, where higher densities may be expected due to fresher rock assemblages.

More infill drilling is needed in areas which could not be classified higher than Inferred
Areas of risk are those that have not been populated due to small search or that are poorly informed but that fall in classified areas. Special awareness is needed for those areas at surface, where blast holes should be sampled prior to assigning this material barren.

Special interest should be paid to the deeper, well mineralised areas.
Revert back to 1 m sample composites for the MRE due to better geostatistical control, within a wireframe constructed on the base of 5 m composites.

QAQC data from all existing drill holes shall be stored in one single file, not separated by drill campaign and hole type.

If further RC drilling for grade control will take place, true field duplicates shall be taken from the original 40 kg bag after the first split. This will help to better quantify the nugget effect.

Continued structural knowledge should be obtained from pit wall mapping and integrated into the model. This will increase confidence in the southern areas, where little drilling has been done so far.

18 REFERENCES

Pohl, J. (2022) 20220512_Informe_Actualisación_Modelo de recursos_Mayo_2022_EN
Pohl, J. (2021) 20210825_Informe_Actualisación_Modelo de recursos_Julio_2021
Saloro (2021) BARRUECOPARDO_DDH_QA/QC. Internal document.

Pohl, J. (2020) Filenote SALORO Blast-RC-topcut-elements

Pohl, J. (2019) QAQC Protocol Saloro

The Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia, The JORC Code, 2012 Edition. Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code)

Walters, N.; Titley, M. (2012) Mineral Resource Estimation, Barruecopardo Tungsten Deposit, Spain. CSA Report R109.2012. CSA Global report for Saloro SLU.

Sanderson, D. J. et. al. (2008) Quantitative Analysis of Tin- and Tungsten-Bearing Sheeted Vein Systems, Society of Economic Geologists, Economic Geology v. 103 pp 1043-1056.

IGME (Instituto Geológico y Minero de España) 1:50.000 geological map (Vilvestre 449) MAGNA50 edition Digital map and description.

Arribas, A., 1979, Les gisements de tungstène de Barruecopardo: Chronique de la Recherche Miniére, v. 450, p. 42-49.

Arribas, A., Arribas Rosado, A., Gumiel, P., Martin Izard, A., and Reguilon, R., 1987, Caracteres metalogénicos de los yacimientos minerales asociados a los granitoides del Macizo Hesperico, in Bea, F., Carnicero, A., Gonzalo, J.C., López Plaza, M., and Rodriguez Alonso, M.D., eds., Geología de los granitoides y rocas asociadas del Macizo Hespérico: Madrid, Editorial Rueda, p. 233-263.

Appendix A

JORC Table 1

Appendix B

Saloro collars

Appendix C

Table 1 Saloro Relevant intersections

Appendix D

Competent Person Consent Form - M. Jörg Pohl

JORC Code, 2012 Edition - Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria
 Sampling

 techniques
JORC Code explanation

Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Drilling techniques

Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).

Commentary

Saloro reverse circulation (RC) drill samples are collected over 1 m intervals. Multiple methods were used to determine Tungsten mineralisation $\left(\mathrm{WO}_{3}\right)$ intervals including visual analysis for quartz, originating from veins and UV fluorescense light analysis. Intervals identified to possibly contain tungsten mineralisation were selected and submitted for intemal laboratory assay analysis.

Saloro diamond drill (DD) core was sampled using 0.05-3.6m intervals in the mineralised zones, including areas of suspected internal low grade or waste. Since 2021 interceptions are between 0.5 m and 1.4 m , aiming for 1 m intervals in addition to the mineralized interval, the sampling is extended 1 or 2 m in the hanging and the foot wall of the interpreted mineralised zone. Half core was used for sampling, unless a duplicate sample was taken. In this case quarter core was used.

Saloro blast hole sampling results have not been used for this resource estimation.
No historic drill core or historic assay analysis prior to 2006 was used for this resource estimation.

Standards and blanks are inserted into the sample stream to assess the accuracy, precision and methodology of the internal laboratory used. In addition, field duplicate samples are inserted to assess the variability of the WO_{3} mineralisation. Approximately $10-15 \%$ of all samples relate to quality control. In addition, the internal laboratory undertakes their own duplicate sampling as part of their internal QA/QC processes. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.

Drill hole collar locations are surveyed by a qualified intemal Saloro surveyor using standard differential GPS (GNSS) equipment TYPE Leica GS14 and tablet CS15, achieving sub decimeter accuracy in horizontal and vertical position. Down-hole surveys are only undertaken since September 2019. 27 DD holes (BD027 to BD053) using a Gyro (type Reflex). Measurements are taken every 5 m down hole. Gyro measurements are not affected by magnetism, in addition no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.
RC drill samples are collected over 1 m intervals and split on site, using a three-tier riffle splitter to provide an approximate $3-5 \mathrm{~kg}$ sample. In rare cases, wet samples are split using a cone and quarter method.

Samples are further split in the core shed using a small riffle splitter such that approximately 800 g samples are generated and sent to the internal preparation laboratory. Here, samples are dried, fine crushed down to below 3 mm , and pulverised with at least 85% of the sample passing $75 \mu \mathrm{~m} .30-50 \mathrm{~g}$ of sample is separated to make a 10 g pressed powder pellet for X-ray fluorescence (pppXRF).

Saloro drilling comprised both DD, using HQ size with occasional PQ size in the top hole and RC drilling using a 140 mm diameter face sampling hammer.

For angled DD no oriented core was achieved. A selected number of short DD holes (BD001-BD027) were logged using an acoustic Televiewer for structural analysis.

Drill sample recovery

Method of recording and assessing core and chip sample recoveries and results assessed.

Saloro DD typically recorded overall core recoveries in excess of 90%, which is considered acceptable.

Criteria	JORC Code explanation	Commentary
		Saloro RC drill samples are collected over 1 m intervals through a cyclone. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Individual sample bags are not weighed to assess sample recovery, but a visual inspection is made by the Company geologist to ensure all samples are of approximately equivalent size. All inspections for recovery are considered as appropriate.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The DD drill rigs used face discharge bits to ensure a low contact between the rock and drilling fluids, minimising ore washing.
		Core was cut using a water saw with care taken to ensure minimal ore loss.
		The RC drilling rigs used suitably sized compressors to ensure dry samples where possible. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Sample logs record whether the sample is dry, moist or wet.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To avoid any core flushing, the use of water in core recovery for DD is controlled.
		There is no known relationship between sample recovery and grade.
		The RC sample recoveries are of an acceptable level and no bias is expected from any sample losses.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Saloro logging of DD core included recording descriptions of lithology intervals, which were then coded into the database.
		Saloro geotechnical logging of DD core included recording descriptions of integrity (recovery and RQD), materials (lithology, and alteration).
		Saloro structural logging of DD core included recording descriptions of structure type, structural angles, fracture intensity and infill type.
		Saloro geological logging of RC chip samples included recording descriptions of lithology, weathering, alteration, and mineralisation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
		Saloro DD core boxes were photographed both dry and wet and photos are stored on the local server.
	The total length and percentage of the relevant intersections logged.	All DD and RC drill holes are logged in full by the company geologists and written into a digital database in Excel format.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Saloro DD core was sampled using $0.05-3.6 \mathrm{~m}$ intervals in the mineralised zones, including areas of internal low grade or waste.
		Average length of 96% of the samples is between $0.8-1 \mathrm{~m}$. In addition the sampling was extended by 1 or 2 m up and down hole from the interpreted mineralised zone.
		Half or quarter core was used for sampling. The remaining core is stored back in the respective core box.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Saloro RC drill samples were collected at 1m intervals. RC intervals were sampled by splitting dry samples in the field to $3-5 \mathrm{~kg}$ using a three-tier riffle splitter. This sample was taken to the core shed, geologically logged and further split to $0.8-1 \mathrm{~kg}$ using small riffle splitter. Where samples were wet, they were dried prior to spitting.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Saloro analytical samples are systematically prepared and analyzed in Saloro's internal on-site laboratory. Samples were dried, fine crushed down to 70% below 3 mm and pulverised with at least 85% of the sample passing $75 \mu \mathrm{~m} .10 \mathrm{~g}$ of sample was used for analysis by pressed powder pellet XRF method. The XRF ppp method is considered appropriate for this style of Tungsten mineralisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Previous field tests have determined that the sample size and method of sampling produce representative RC samples. QA/QC procedures involve the use of standards, duplicates and blanks which are inserted into sample batches at a frequency of approximately 15-20\%.

Criteria	JORC Code explanation
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.

Commentary

Duplicate splits of RC samples are taken every 10 m down hole within the sampled intervals. The results from these duplicates generally show acceptable repeatability. In some cases, indications of inhomogeneity were observed in a number of duplicates, mainly concemed are samples with grades below $0.05 \% \mathrm{WO}_{3} .5 \%$ of the sample pulps are sent to an Umpire lab (ALS Loughrea). Results show good repeatability.
The Tungsten mineralization occurs within quartz veins as coarse scheelite and to a minor content as wolframite minerals. Previous test work carried out by Saloro using different sample sizes has demonstrated that the selected sample size is appropriate.

Quality of	The nature, quality and appropriateness of the assaying and
assay data	
laboratory procedures used and whether the technique is	
laboratory	considered partial or total.

Saloro assayed samples for Tungsten using the XRF Fluorescence Spectrography method with pressed powder pellets. This analytical method reports total tungsten content.

For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Verification The verification of significant intersections by either of sampling and assaying
independent or alternative company personnel.

The use of twinned holes.

Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

Discuss any adjustment to assay data.

No geophysical surface or downhole tools are used to achieve analytical grades.

Standards (CRM certified reference material), blanks and duplicates were regularly inserted into the sample stream by Saloro, with approximately $15-20 \%$ of all samples related to quality control. The internal laboratory also used their own process of QA/QC inserting standards, pulp repeats, sample duplicates and blanks.

Review of the Saloro quality control samples, as well as the internal laboratory quality QA/QC reports, has shown no sample preparation issues, acceptable levels of accuracy and precision and no bias in the analytical datasets.

Reported significant intersections have been checked and verified by Senior Geological management. In addition, selected significant intersections have been checked by the Independent CP.

Two twin holes have been drilled in the early stage of the development of the deposit, BAR0046bis and BAR056bis. Correlation between both is however challenging, as separation between holes is $>7 \mathrm{~m}$ at first mineralized intercepts. Probably as well due to the high nugget effect seen for the entire deposit and as well on DD hole duplicates.

All primary data was recorded in templates designed by Saloro. Assay data from the internal laboratory is received in digital and downloaded directly into the Excel spreadsheet, managed by the company's chief geologist.
Data is entered into controlled excel templates for validation.
Regular backups of all digital data are undertaken. These procedures are documented in an internal report (Core drilling - QAQC, May 2021)

Tungsten assay data is received from the internal laboratory as $\mathrm{WO}_{3} \%$ and is imported as such into the database. Likewise with the three other analytical elements As, P and S .

Saloro drill hole collar locations were surveyed by their internal surveyors after drilling, using a standard differential GPS (DGPS) equipment achieving sub decimeter accuracy in horizontal and vertical position.

Saloro down-hole surveys were undertaken by SPIDRILL S.A.U. on selected DD holes using a Reflex Gyro down-hole deviation probe. Measurements were taken every 5 m down. Not affected by Gyro measurements, however no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Topographic control is based on a digital terrain model with sub metric
accuracy and in the open pit area down to 2.5cm/pixel resolution,		
		generated through an intemal drone survey and is verified through
	detailed drill hole collar surveys by Saloro's qualified surveyor using	
a DGPS.		
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The majority of the Saloro drilling was undertaken on a notional 35m
		to 50 mm grid, with section lines orientated approximately perpendicular
to the interpreted strike of the mineralisation.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Barruecopardo Tungsten Prospect lies within the Mining Concession (concesión de explotación) C.E. BARRUECOPARDO № $6.432-10$ which is 100% owned by Saloro SLU. The Barruecopardo mining Concession has been granted in 2014 by the Spanish mines department for a 30 -year period and is renewable two times for the same period until the year 2104.

Criteria	JORC Code explanation	Commentary
		The Barruecopardo mining concession lies within a special protection are for birds forming part of the EU Nature Network 2000. The mining and processing area is located adjacent to the village of Barruecopardo. The current environmental impact authorisation is based on the "Declaracion de Impacto Ambimental (DIA), published in the local governmental announcement "Boletín Oficial de Castilla y León" (BOCYL no 25, dating 6 of February 2014), ORDEN FYM/45/2014.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure in the form of a Mining Concession has been granted in 2014 and is considered secure. The mine has been reopened in 2019 and is operating since that time. There are no known impediments to operations.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Although other parties have been developing the mine previously, the entire dataset, all work referred to and used for this study has been realized and provided by Saloro SLU.
Geology	Deposit type, geological setting and style of mineralisation.	Geologically, the Barruecopardo mine is situated within the Central Iberian Zone and characterized by paleozoic metasediments of the Shist-Grauwacke Complex (CEG), and large units of granitic varican rocks intruded into those metasediments. In the Barruecopardo prospect, the mineralization is hosted within sheeted narrow quartz vein swarms, oriented NNE-SSW and steeply dipping at $80-85$ - towards the ESE. Main Tungsten mineral is Scheelite with a minor content of Wolframite. Tungsten is often associated with sulfides (pyrite, arsenopyrite, chalcopyrite). The tectonic activity which is the origin of those shear vein deformation is of variscan age when spaces have been filled during the active period.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	Details of all reported drill holes are provided in Appendix B of this report.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All information is Material and has been included in Appendix B of this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported drill intersections are based on chemical assay data and are calculated using a $0.05 \% \mathrm{WO}_{3}$ cut-off. No high grade cut has been applied to the dataset. A composite length of 5 m has been chosen within the modeled wireframes.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralised intervals are typically very narrow, reflecting the vein-style mineralization of the deposit. All intervals have been tabulated in Appendix C; no aggregation has been made.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drilling was planned in such a way as to intersect expected mineralisation in a perpendicular manner. The tungsten mineralisation has been observed subvertical, consequently all RC and DD holes have been drilled inclined between -36 and -71 degrees. The reported down-hole intervals are recalculated to true widths. The sheeted vein

Criteria	JORC Code explanation	Commentary
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	swarms are grouped into 5m composites Intercepts a The reported down-hole intervals are recalculated to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams, including a drill plan and cross sections, are included in the main body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported in Appendix C of this report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A downhole geophysics study with CORELOG INGENERIA using an acoustic televiewer, a spectral gamma ray and a dual induction tool have been realized in 2019. Multi Element chemical data is used for most of the chemical data with the objective to characterize geochemical patterns, economic elements or eventual deleterious elements. Bulk density measurements are unchanged from the previously MRE 2011 (CSA) who derived an average density value of 2.62 from a total of 934 samples originating from 22 holes. Geotechnical test work reporting is ongoing on a two-month basis. A geomechanical study has been performed by Golder in 2020, on pit wall stability.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).	No immediate further work is planned for the Barnecopardo Prospect. New drilling could target inferred areas to raise those into higher categories and increase geological confidence. Mineralisation remains open along strike and at depth, with both areas to be targeted in subsequent drilling campaigns. Geological studies will focus on detailed interpretation of structural information, and it's influence on grade distribution.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diagrams and cross sections are shown in the main body of this report.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has notbeen corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Drill hole data is stored in a secured and access restricted Excel spreadsheet on the server. Drill data recorded in a spreadsheet is transferred to the database by the project geologist who is responsible for reviewing and validating the data. Assay data is received from the intemal laboratory in digital format and is loaded directly into the database.
Geological logging is restricted to appropriate codes relevant to the local geology, mineralisation and alteration setting. A copy of the master database in MS Access format is linked to Surpac mining software for Mineral Resource Estimation (MRE).		

Criteria	JORC Code explanation	Commentary
	Data validation procedures used.	Database validation checks including collar survey position, down hole survey control, assay limits, sample intervals and logging codes are completed prior to the data being transferred to the master database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Sampling techniques and procedures, as well as QA/QC data, are reviewed intemally on an ongoing basis. Jörg Pohl, (CP, Geology Consultant, Independent Resource Geologist) has reviewed the sampling techniques, procedures, data and resource estimation methodology. He has undertaken a number of site visits, the most recent being in August 2023, to review and inspect the application of these procedures. He concludes that the sampling and analytical results available are appropriate for estimation of the Mineral Resource.
	If no site visits have been undertaken indicate why this is the case.	Site visits have been undertaken.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence of the geological interpretation is appropriate for the current level of resource estimation. The resource is defined within mineralised envelopes which encompass all zones of significant mineralisation.
	Nature of the data used and of any assumptions made.	Geology and mineralisation interpretation is based on geological logging and sample assays derived from RC and DD drilling, along with cross sectional interpretations which include surface mapping information and geophysical studies (acoustic televiewer).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Structural studies show dips of structures to vary between 50° and 85° with a predominant subvertical dip of 80 to 85°. Structural control is understood to be the principal factor of the tungsten mineralisation for the Barruecopardo, sheeted vein style deposit.
	The use of geology in guiding and controlling Mineral Resource estimation.	On the deposit scale the grade is interpreted to be more influenced by structure.
	The factors affecting continuity both of grade and geology.	Geological logging and chemical assay of samples from drill holes has demonstrated the continuity of the grade and mineralised structures between sections. Breaks in continuity are minor. If observed, they are likely due to structural offsets, some of which have been observed or interpreted from surface mapping.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Barruecopardo mineralisation covers an area of approximately 1.6 km by $0.1-0.3 \mathrm{~km}$ and is still open to both sides (NE and SW) and towards depth, showing mineralisation beyond 400 m below surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	A mineralised envelope at Barruecopardo is created encompassing all zones of significant mineralisation. A number of nine different domains have been interpreted using geological information and chemical grades. Assay WO_{3} data has been composited to 5 m intervals with a minimum grade of $0.05 \% \mathrm{WO}_{3}$, allowing for internal waste.
		Geostatistical variogram modelling was used to determine appropriate parameters for estimation of tungsten grade, using Ordinary Kriging (OK) for all domains in order to simulate the grade tonnage distribution based on a Selective Mining Unit (SMU) of $6 \mathrm{~m} \times$ $6 m \times 5 m(x-y-z)$.
		Surpac software was used for mineralisation volume interpretation and tungsten grade estimation.
		Chemical assay data is from DD and RC sampling. For all other intervals that have been considered barren, a background grade of $0.002 \% \mathrm{WO}_{3}$ has been used. For the deleterious elements As, P and S , respective background values of $0.005 \%, 0.004 \%$ and 0.005% have been applied.
		The drill hole spacing is approximately 40 m in the eastern part of the deposit and down to 460 m of depth and in the northwestern part down to an RL of 590 m .

Commentary

No drilling took place below an RL of 650m, in the southwestern part of the main pit.

Nine mineralisation domains were identified (D1, to D9).
5 m sample composites were used to estimate grade into 6 m by 6 m by $5 \mathrm{~m}(\mathrm{x} / \mathrm{y} / \mathrm{z})$ parent blocks using OK. Sub blocking is allowed for x and y directions to $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$. No sub blocking in vertical direction.
No Top cut was applied. To reduce local bias due to extreme high grade samples, large composites of 5 m were used, allowing up to 4 m of internal of intemal waste, given composite grades exceed 0.05% WO_{3}. The 5 m composites are considered to reflect operational minable intervals, in contrast to the very thin mineralised veins.
Appropriate search volumes, minimum and maximum sample numbers and block sizes were used, based on the results of Kriging Neighbourhood Analysis. The variogram nugget value of 47% was used. All other relevant estimation parameters are presented in the table below:

Barruecopardo ordinary kriging estimation parameters November 2023		
Parameters (1st/2nd/3rd pass)	Domains 1-6	Domains 7-8-9
Minimum composite samples to estimate one block	$4 / 3 / 2$	$4 / 3 / 2$
Maximum composite samples to estimate one bbck	$6 / 5 / 4$	$6 / 5 / 4$
Search ellipse Major Range (m)	$50 / 100 / 160$	$50 / 100 / 160$
Search ellipse Semimajor Range (m)	$42 / 83 / 133$	$42 / 83 / 133$
Search ellipse Minor Range (m)	$6.3 / 6.3 / 6.7$	$6.3 / 6.3 / 6.7$
Max composite samples per hole	2	2
Max vertical distance to sample	$25 / 35 / 45$	$25 / 35 / 45$
Search ellipse bearing Major (degrees)	15	10
Search ellipse plunge (degrees) towards SSW	5	5
Search ellipse dip (degrees)	-85	-85
Discretisation points	$4 / 4 / 4$	$4 / 4 / 4$

In-situ dry bulk densities were assigned based on intemal studies, a common value of $2.62 \mathrm{~g} / \mathrm{cm}^{3}$ was used to estimate tonnage.

The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.

The current resource estimate was compared with the previous internal resource estimate (CSA 2012 and Jorg Pohl 2022) which were based on earlier drill campaigns and resource estimations (2012, 2019, 2021 and 2022). All of which support the current results, taking ongoing mining operations and different estimation parameters into account.

The assumptions made regarding recovery of by-products.
The resource model estimates Tungsten (three pass OK estimation) and the following elements, considered as deleterious elements: As, P, S. (single pass ID ${ }^{2}$ estimation)
Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).

In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.

Deleterious elements are Uranium, Arsenic, Sulphur and Phosphorus. None of them is considered to have economic significance.

The tungsten grade is estimated into the $6 \mathrm{~m}(\mathrm{x})$ by $6 \mathrm{~m}(\mathrm{y})$ by $5 \mathrm{~m}(\mathrm{z})$ blocks using an Ordinary Kriging three pass estimation process. This compares to the average drill spacing of $35-50 \mathrm{~m}$ in x and y direction. An SMU size was chosen to match the feasibility study open cut mining methodology with 5 m benches or multiples of 5 m .

Any assumptions behind modelling of selective mining units.

SMU dimensions have been chosen based on the selection of haul backhoe excavators and dump trucks.

Any assumptions about correlation between variables.

Description of how the geological interpretation was used to control the resource estimates.

Tungsten is the only economic metal estimated in the current resource model.
Structural orientations and chemical grade interpretation controlled the volume of the resource estimate by restricting the interpretation of the mineralisation volume and associated samples to material with continuity above a $0.04 \% \mathrm{WO}_{3}$ grade.
The domains are based on geology, structure, and Tungsten grade with defined zones of mineralisation that show continuity along and across strike.

Criteria	JORC Code explanation	Commentary
	Discussion of basis for using or not using grade cutting or capping.	Tungsten grade distribution exhibits a strong nuggety effect. It was decided to use single high grades as such and not to apply any top cut. Nevertheless, to compensate for those outliers and an eventual bias, it was decided to composite individual samples to 5 m composites for the estimation process, allowing up to 4 m of intemal low-grade material if the weighted composite grade does not fall below the lower limitation of $0.05 \% \mathrm{WO}_{3}$. This permits to model and integrate continuous narrow veins into the estimation, conserving uncut grades.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Validation of the MRE included visual inspection of the grade distribution compared to the drill data, comparison of block model statistics to the sample statistics and the generation of swath plots. This validation process confirmed that the MRE appropriately represents the grade and tonnage distribution of the tungsten mineralisation at the confidence levels reported.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The resource tonnage is reported on a dry bulk density basis. In-situ specific gravity measurements were completed on dry DD core using the "Archimedes" principle. Sample grades are reported using dry weight. No moisture content of DD core has been determined.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The MRE has been reported using a $0.05 \% \mathrm{WO}_{3}$ cut-off grade. Based on the current tungsten market, reporting of the MRE at a 0.05% cutoff grade is both justifiable and consistent with previous published MRE's for this style of mineralisation.
Mining factors orassumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The DFS and ongoing mining activity since 2019 demonstrated that the Barruecopardo resource can economically be extracted using open pit mining methods. Indicative parameters used for pit optimisation purposes in recent studies are (communicated from the Saloro mine manager): Tungsten selling price: 279.45-364.5 \$/MTU Total Mining Cost: 1.62 \$/t Mining recovery: 96% Mining dilution: 7% Plant Process Cost (incl. G\&A cost): 11.64 \$/t Recovery WO_{3} : 64\% Slope angle: 45-59응 Selling costs: 4.04 (\$/MTU) Exchange rate (\$/€): 1.12 Discount rate: 8\%
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work on representative samples across a range of ore types has been undertaken for the Barruecopardo deposit. The results of this test work showed the mineralisation to be amenable to gravimetric separation, with tungsten recoveries set out in the original DFS completed by Saloro at over 75% recovery of WO_{3} but results in the order of 47% recovery of WO_{3} (written communication Saloro) in the past year. Recent test work investigated increasing recovery from the fines which are currently considered as reject and sent to tailings as an opportunity to increase recovery. This work was undertaken by Wardell Armstrong Int and employs the use of Falcon Concentrators for the recovery of the ultra-fine fraction. These Falcon Concentrators have been purchased and are set for installation in 2024. In addition to this, an Australian independent metallurgical consultancy "In Search of Excellence" led by Kevin Hamey, has been engaged for the overall processing circuit and has developed a structured program to increase recoveries from their current levels through a structured road map to achieve a 64% recovery in the near term and a 75% recovery as per the original DFS model on an ongoing basis in the long-term. Lastly, in addition to the original BFS, a recent process upgrade has been installed at the Barruecopardo processing plant, being two TOMRA XRT Sorters. These high-tech machines have had a

		positive impact overall, seeing a $+90 \%$ recovery on feed to the XRT Sorter. This reduces overall mass early on in the process, concentrates tungsten bearing ore after initial crushing, and lowers overall processing costs. The XRT Sorters help to reduce mass going to the quaternary crusher circuit at the Barruecopardo process plant and reduce ultra-fines generation overall, which is one of the current recovery loss drivers. Ultimately, the recovery losses appear to be mainly process related and confidence is high that they will rectified under the metallurgical program set out by the metallurgical consultants and use of the Falcon Concentrators as recommended by Wardel Armstrong. Overall, these process improvements, all lead toward a reasonable and economic recovery assumption of 64%.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Waste and process residue disposal as per environmental impact study (DIA) dating $6^{\text {th }}$ of February 2014 and published in BOCYL n ㅇ25) to the respective tailings and waste dumps. On 6th of March 2021 Saloro S.L.U. applied for authorisation to modify the current tailings dump. Authorisation has been given on 15th of November 2021. A newly modification is planned (2023), concerning a volumetric change of the tailings damp. Authorisation has not been given yet, Saloro S.L.U. however considers all necessary authorisations in respect to this project, to be achievable. No further potential environmental impacts of the mining and processing operation are known.

Saloro

Criteria	JORC Code explanation	Commentary
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	In-situ dry bulk density values were derived from DD core samples, using the Archimedes water immersion method. From 934 individually analysed samples with origin of 22 different DD holes, a single value has been adapted for the entire deposit, which is $2.62 \mathrm{~g} / \mathrm{ccm}$.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Rocks over the entire deposit are fresh and competent. Rock is competent enough to ensure the method used, takes into account any rock porosity.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	One common density measurementhas been classified by geological logging.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The reported MRE has been classified as Measured, Indicated and Inferred after consideration of the following:
		Adequate geological evidence and drill hole sampling is available to assume geological and grade continuity.
		Adequate in-situ dry bulk density data is available to estimate appropriate tonnage factors.
		Adequate mining, metallurgy, and processing knowledge to imply potential prospect for economic extraction.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The reported MRE has been classified with consideration of the quality and reliability of the raw data, the confidence of the geological interpretation, the number, spacing and orientations of intercepts through the mineralised zones and knowledge of grade continuity gained from observations and geostatistical analysis.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported MRE and its classification are consistent with the Competent Person (CP) view of the deposit. The CP was responsible for determining the resource classification.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Saloro has undertaken a review of the previous MRE and concluded that the estimate was developed using industry standard methods and that the estimate was considered to reflect the understanding of the geology and grade continuity.
		Jörg Pohl (CP, Geology Consultant, Independent Resource Geologist) reviewed the reported MRE and concluded that the estimate appropriately represents the grade and tonnage distribution of tungsten mineralisation at confidence levels commensurate with the Inferred, Indicated and Measured resource classification.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The confidence level is reflected in the resource classification category chosen for the reported MRE. The definition of Indicated and Inferred Mineral Resources is appropriate for the level of study and the geological confidence imparted by the drilling grid. The reported MRE is considered appropriate and representative of the grade and tonnage at the $0.05 \% \mathrm{WO}_{3}$ cut-off grade. The application of geostatistical methods has helped to increase the confidence of the model and quantify the relative accuracy of the resource on a global scale. It relies on internal data sourced by recent drilling. The relevant tonnages and grades are variable on a local scale for SMU dimensions of 5 m by 5 m by $6 \mathrm{~m}(\mathrm{x} / \mathrm{y} / \mathrm{z})$. The CP considers that the current drilling grid is sufficient for classification of the Mineral Resource as Measured, Indicated, or Inferred.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Barruecopardo deposit is likely to have local variability. The global assessment is an indication of the average tonnages and grade estimate for each geological domain.

Criteria	Come Code explanation	Comentary
	These statements of relative accuracy and confidence of	The Barruecopardo mine is under production since 2019. Recent
the estimate should be compared with production data,	reconciliation has shown differences between the current resource wodel and production numbers. This new model aims for better	
where available.	meconciliation through relevant modifications in modelling and	
	resource estimation, such as newly adjusted wireframes, 5m	
	composites allowing intemal waste as, more restricted search	
	volumes and the replacement of missing intervals by background	
values, accounting for higher intemal dilution.		

APPENDIX B

hole_id	x_collar	Y_collar	z_collar	max_depth	drill_start_date	drill_end_date	hole_type
BAR01	696200.7	4547289	726.932	161.65	23-Feb-06	29-Mar-06	DDH
BAR02	696313	4547289	722.43	321	5-Apr-06	11-Apr-06	DDH
BAR03	696216.5	4547485	727.22	161.05	9-May-06	22-May-06	DDH
BAR04	696223.7	4547689	731.26	160	22-May-06	29-May-06	DDH
BAR05	696262.6	4547478	730.02	161.85	30-May-06	8-Jun-06	DDH
BAR06	696328.5	4547476	726.16	280.5	12-Jun-06	15-Jul-06	DDH
BAR07	696294.1	4547685	729.91	241.85	18-Jul-06	28-Jul-06	DDH
BAR08	695277.7	4546825	705	139.5	29-Jul-06	16-Aug-06	DDH
BAR09	696218.3	4547433	727.828	150	16-Feb-07	27-Feb-07	DDH
BAR10	696220.7	4547535	727.524	150.8	28-Feb-07	7-Mar-07	DDH
BAR11	696214.4	4547587	728.007	150.3	8-Mar-07	15-Mar-07	DDH
BAR12	696228.3	4547645	730.037	150	16-Mar-07	25-Mar-07	DDH
BAR13	696235.1	4547735	733.323	157.5	26-Mar-07	30-Mar-07	DDH
BAR14	696246.9	4547796	734.357	150.1	30-Mar-07	2-Apr-07	DDH
BAR15	696251.3	4547834	732.192	150.2	2-Apr-07	6-Apr-07	DDH
BAR16	696321.6	4547958	726.103	210.5	7-Apr-07	13-Apr-07	DDH
BAR17	696266.8	4547875	728.802	150.45	23-Jul-07	5-Aug-07	DDH
BAR18	696329.2	4547819	733.043	290.2	7-Aug-07	3-Sep-07	DDH
BAR19	696284.4	4547562	728.605	285.45	31-Aug-07	15-Sep-07	DDH
BAR20	696149	4546682	697.544	213.9	11-Sep-07	19-Sep-07	DDH
BAR21	696220.1	4547389	726.509	172.2	21-Sep-07	27-Sep-07	DDH
BAR22	696215.6	4547336	726.899	181.2	28-Sep-07	5-Oct-07	DDH
BAR23	696173.5	4547234	722.729	160	5-Oct-07	16-Oct-07	DDH
BAR24	696063.7	4547154	713.101	153	17-Oct-07	22-Oct-07	DDH
BAR25	696051.3	4547096	705.897	151.8	23-Oct-07	27-Oct-07	DDH
BAR26	696223.9	4546919	712.164	92	28-Oct-07	8-Nov-07	DDH
BAR27	696333.6	4547365	720.821	304.15	28-Oct-07	16-Nov-07	DDH
BAR26BIS	696252.7	4546885	711.774	295.2	9-Nov-07	21-Nov-07	DDH
BAR28	696257	4547481	728.57	217.3	17-Nov-07	24-Nov-07	DDH
BAR29	696298.5	4547730	730.738	220.5	22-Nov-07	29-Nov-07	DDH
BAR30	696323.9	4547921	727.586	213.4	25-Nov-07	11-Dec-07	DDH
BAR31	696266	4547626	729.435	205.3	29-Nov-07	13-Dec-07	DDH
BAR32	696464.4	4547899	733.411	100.2	13-Dec-07	16-Dec-07	DDH
BAR34	696465.4	4547823	731.252	87	14-Dec-07	18-Dec-07	DDH
BAR33	696067	4547201	711.618	151.1	16-Dec-07	10-Jan-08	DDH
BAR36	696276	4547012	715.235	205.4	14-Jan-08	22-Jan-08	DDH
BAR35	696208.2	4546770	700.787	277.3	10-Jan-08	24-Jan-08	DDH
BAR38	696099.3	4546558	688.277	175.4	25-Jan-08	31-Jan-08	DDH
BAR37	696309.8	4547107	714.776	217.4	23-Jan-08	7-Feb-08	DDH
BAR39	696280.2	4547297	726.76	145.1	1-Feb-08	7-Feb-08	DDH
BAR40	696352.4	4547284	713.685	223.3	8-Feb-08	15-Feb-08	DDH
BAR41	696370.1	4547402	715.535	174.8	8-Feb-08	16-Feb-08	DDH
BAR42	696382	4547354	712.715	199.25	16-Feb-08	22-Feb-08	DDH
BAR43	696318.4	4547417	724.319	169.6	19-Feb-08	25-Feb-08	DDH
BAR44	696290.8	4547255	722.49	115.3	25-Feb-08	27-Feb-08	DDH
BAR45	696297.9	4547326	725.436	111.3	26-Feb-08	29-Feb-08	DDH
BAR46	696350.1	4546858	692.808	310.3	10-May-08	26-May-08	DDH
BAR46BIS	696352	4546863	693.025	443	27-May-08	21-Jun-08	DDH
BAR47	696232.9	4546831	710.871	270.1	27-Aug-08	6-Sep-08	DDH

BAR48	696232.2	4546831	710.876	219.8	8-Sep-08	16-Sep-08	DDH
BAR49	696199.7	4546708	698.05	251.1	16-Sep-08	30-Sep-08	DDH
BAR50	696284.9	4546953	702.007	269.8	17-Sep-08	1-Oct-08	DDH
BAR51	696052.2	4546451	693.362	109.95	2-Oct-08	7-Oct-08	DDH
BAR52	696284.2	4546953	702.029	213.95	2-Oct-08	10-Oct-08	DDH
BAR53	696035.1	4546483	686.904	72.45	8-Oct-08	15-Oct-08	DDH
BAR54	696118	4546641	697.771	139.85	16-Oct-08	23-Oct-08	DDH
BAR55	696148	4546734	706.601	177.45	16-Oct-08	24-Oct-08	DDH
BAR56	696144.2	4546628	697.154	83	8-Oct-10	19-Oct-10	DDH
BAR56BIS	696144.8	4546626	697.186	241.9	21-Oct-10	3-Nov-10	DDH
BAR57	695995.6	4546589	682.784	93.2	4-Nov-10	7-Nov-10	DDH
BAR58	696087.7	4546540	688.047	150	8-Nov-10	13-Nov-10	DDH
BAR59	695976.9	4546549	683.046	74.6	16-Nov-10	26-Nov-10	DDH
BAR60	696114.6	4546587	694.574	153.5	28-Nov-10	5-Dec-10	DDH
BAR61	696098.9	4546620	698.254	135.1	6-Dec-10	12-Dec-10	DDH
BAR62	696119.9	4546663	698.324	150.1	13-Dec-10	20-Dec-10	DDH
BAR63	696225.9	4546739	698.898	337.8	3-Jan-11	17-Jan-11	DDH
BAR64	696138.6	4546713	705.428	149	13-Jan-11	19-Jan-11	DDH
BAR66	696226.7	4546790	701.579	235.2	3-Jan-11	20-Jan-11	DDH
BAR65	696243.3	4546861	711.079	223.1	18-Jan-11	24-Jan-11	DDH
BAR67	696290.5	4547033	716.025	229.5	25-Jan-11	1-Feb-11	DDH
BAR68	696292.8	4547059	714.919	198.7	2-Feb-11	9-Feb-11	DDH
BAR69	696215.5	4546817	706.37	248.2	4-Feb-11	17-Feb-11	DDH
BAR70	696054	4547043	710.382	279.7	11-Feb-11	25-Feb-11	DDH
BAR71	696319.5	4546894	696.005	260.6	16-Feb-11	28-Feb-11	DDH
BAR72	696312.4	4547227	717.67	157	18-Feb-11	28-Feb-11	DDH
BAR73	696297.7	4546927	699.06	320.1	25-Feb-11	7-Mar-11	DDH
BAR75	696311.4	4546974	701.265	226.2	1-Mar-11	11-Mar-11	DDH
BAR74	696309	4546819	692.804	384.3	28-Feb-11	12-Mar-11	DDH
BAR76	696406.9	4547488	714.492	192.6	22-Mar-11	29-Mar-11	DDH
BAR77	696369	4547502	719.927	191.8	30-Mar-11	8-Apr-11	DDH
BAR78	696369.7	4547450	719.081	153.6	8-Apr-11	14-Apr-11	DDH
BAR79	696024.3	4547540	714.01	153	13-Apr-11	14-Apr-11	DDH
BAR80	696002.2	4547445	711.937	150.6	20-Apr-11	2-May-11	DDH
BAR81	696439.1	4547393	708.637	264.3	29-Mar-12	12-Apr-12	DDH
BAR82	696484.8	4547376	706.07	285.2	17-Apr-12	24-Apr-12	DDH
BAR84	696505.5	4547311	703.833	341.5	1-Oct-15	23-Oct-15	DDH
BAR86	696366.8	4546985	699.46	418.5	26-Oct-15	11-Nov-15	DDH
BAR83	696415.8	4547418	711.975	473.5	30-Sep-15	17-Nov-15	DDH
BAR85	696411.8	4546921	697.203	401.8	26-Oct-15	2-Dec-15	DDH
BAR87	696422.2	4547229	706.192	359.6	18-Nov-15	14-Dec-15	DDH
BI0001	696272.3	4547328	728.721	40	21-May-18	22-May-18	RC
BI0002	696288.7	4547321	727.052	40	22-May-18	23-May-18	RC
BI0003	696258.3	4547302	728.859	40	23-May-18	23-May-18	RC
BI0004	696286	4547289	727.009	49	24-May-18	24-May-18	RC
BI0005	696244	4547275	727.898	70	25-May-18	29-May-18	RC
BI0006	696281.8	4547258	724.698	40	29-May-18	29-May-18	RC
BI0007	695989.4	4546573	682.778	30	30-May-18	30-May-18	RC
BI0008	695986.7	4546543	682.636	30	30-May-18	31-May-18	RC
BI0009	696013.7	4546539	682.776	49	31-May-18	1-Jun-18	RC

BI0010	696023	4546567	680.727	50	1-Jun-18	1-Jun-18	RC
BI0011	696029.5	4546539	681.379	70	2-Jun-18	2-Jun-18	RC
BI0012	696005.3	4546510	683.244	52	3-Jun-18	4-Jun-18	RC
BI0013	696276.7	4547277	727.636	40	5-Jun-18	5-Jun-18	RC
BI0014	696290.2	4547303	728.715	40	6-Jun-18	6-Jun-18	RC
BI0015	696261.1	4547317	728.996	40	11-Jun-18	11-Jun-18	RC
BI0016	696251.8	4547288	728.41	46	11-Jun-18	12-Jun-18	RC
B10017	696240.6	4547261	727.501	43	13-Jun-18	13-Jun-18	RC
BI0018	696278.8	4547342	730.007	40	13-Jun-18	14-Jun-18	RC
BI0019	696298.1	4547333	728.236	43	14-Jun-18	15-Jun-18	RC
BI0020	696265.1	4547265	725.918	70	15-Jun-18	16-Jun-18	RC
BI0021	696275.5	4547294	727.782	43	16-Jun-18	17-Jun-18	RC
BI0022	696265.5	4547282	727.679	40	17-Jun-18	17-Jun-18	RC
BI0023	696326.4	4547403	723.662	40	2-Aug-18	3-Aug-18	RC
BI0024	696309.5	4547395	727.043	44	6-Aug-18	6-Aug-18	RC
BI0025	696319.5	4547391	726.2	43	7-Aug-18	7-Aug-18	RC
BI0026	696317.8	4547374	726.011	40	7-Aug-18	8-Aug-18	RC
B10027	696306.7	4547380	728.78	45	9-Aug-18	9-Aug-18	RC
BI0028	696282.7	4547374	730.624	46	10-Aug-18	10-Aug-18	RC
BI0029	696292.7	4547371	729.806	43	10-Aug-18	11-Aug-18	RC
B10030	696302.7	4547368	728.966	46	11-Aug-18	12-Aug-18	RC
BI0031	696279.1	4547358	729.671	47	12-Aug-18	13-Aug-18	RC
BI0032	696288.7	4547353	728.347	47	14-Aug-18	14-Aug-18	RC
BI0033	696298.3	4547349	727.957	45	20-Aug-18	21-Aug-18	RC
BI0034	696307.7	4547344	727.502	43	21-Aug-18	22-Aug-18	RC
BI0035	696269.4	4547347	729.757	28	22-Aug-18	23-Aug-18	RC
BI0036	696288.7	4547337	728.977	46	23-Aug-18	24-Aug-18	RC
B10037	696244	4547342	729.756	19	24-Aug-18	25-Aug-18	RC
BI0038	696253.6	4547338	729.818	47	25-Aug-18	26-Aug-18	RC
BI0039	696263	4547333	729.313	47	26-Aug-18	27-Aug-18	RC
BI0040	696280.7	4547325	727.892	13	27-Aug-18	28-Aug-18	RC
BI0041	696252	4547321	729.495	46	28-Aug-18	3-Sep-18	RC
BI0042	696222.9	4547335	728.67	46	3-Sep-18	4-Sep-18	RC
BI0043	696232.5	4547330	729.106	46	5-Sep-18	5-Sep-18	RC
BI0044	696242.4	4547326	729.471	46	5-Sep-18	6-Sep-18	RC
BI0045	696270.1	4547313	729.137	46	6-Sep-18	7-Sep-18	RC
BI0046	696278.9	4547309	728.749	45	7-Sep-18	8-Sep-18	RC
BI0047	696299.8	4547301	727.846	42	8-Sep-18	9-Sep-18	RC
BI0048	696198.8	4547329	726.947	43	9-Sep-18	10-Sep-18	RC
BI0049	696209.8	4547324	727.797	45	10-Sep-18	11-Sep-18	RC
BI0050	696219.8	4547320	728.743	46	11-Sep-18	12-Sep-18	RC
BI0051	696229.7	4547315	728.829	47	12-Sep-18	17-Sep-18	RC
BI0052	696238.7	4547311	728.933	31	22-Sep-18	23-Sep-18	RC
BI0053	696248.8	4547306	729.148	45	23-Sep-18	24-Sep-18	RC
BI0054	696268.4	4547298	728.093	46	24-Sep-18	25-Sep-18	RC
BI0055	696295.9	4547284	725.414	42	25-Sep-18	26-Sep-18	RC
BI0056	696305	4547283	724.952	39	27-Sep-18	27-Sep-18	RC
BI0057	696193.5	4547317	726.583	42	27-Sep-18	28-Sep-18	RC
BI0058	696204.3	4547311	727.299	44	28-Sep-18	1-Oct-18	RC
BI0059	696214	4547306	728.063	44	1-Oct-18	1-Oct-18	RC

BI0061	696231.8	4547298	728.459	46	3-Oct-18	3-Oct-18	RC
BI0060	696222	4547303	728.099	47	3-Oct-18	4-Oct-18	RC
BI0062	696242.2	4547293	728.69	55	4-Oct-18	4-Oct-18	RC
BI0063	696286.1	4547272	725.126	44	4-Oct-18	5-Oct-18	RC
BI0064	696296.5	4547267	724.307	40	5-Oct-18	5-Oct-18	RC
BI0065	696304.5	4547263	723.553	40	6-Oct-18	6-Oct-18	RC
BI0066	696184.5	4547304	726.131	42	6-Oct-18	6-Oct-18	RC
BI0067	696194.9	4547299	726.834	42	7-Oct-18	7-Oct-18	RC
BI0068	696204.7	4547294	727.218	43	7-Oct-18	8-Oct-18	RC
BI0069	696215	4547289	727.709	45	8-Oct-18	8-Oct-18	RC
BI0070	696224.3	4547285	728.117	46	9-Oct-18	9-Oct-18	RC
BI0071	696234.5	4547280	728.252	55	9-Oct-18	10-Oct-18	RC
BI0072	696254.7	4547271	726.846	55	10-Oct-18	15-Oct-18	RC
BI0073	696274.1	4547261	724.109	42	15-Oct-18	15-Oct-18	RC
BI0074	696289.7	4547254	722.665	38	16-Oct-18	16-Oct-18	RC
BI0075	696298.9	4547249	721.739	38	16-Oct-18	16-Oct-18	RC
BI0076	696202.1	4547278	726.872	43	16-Oct-18	17-Oct-18	RC
BI0077	696211.6	4547274	727.196	48	17-Oct-18	17-Oct-18	RC
B10078	696221.9	4547269	727.548	48	17-Oct-18	18-Oct-18	RC
BI0079	696231.4	4547265	727.512	55	18-Oct-18	18-Oct-18	RC
BI0080	696251.5	4547261	726.085	53	22-Oct-18	22-Oct-18	RC
BI0081	696270.6	4547252	723.584	40	22-Oct-18	22-Oct-18	RC
BI0082	696280.2	4547247	722.817	40	23-Oct-18	23-Oct-18	RC
BI0083	696288.5	4547244	722.217	40	23-Oct-18	24-Oct-18	RC
BI0084	696297.3	4547239	721.525	35	24-Oct-18	24-Oct-18	RC
BI0085	696186.8	4547286	726.401	43	24-Oct-18	25-Oct-18	RC
BI0086	696195.3	4547282	726.494	43	25-Oct-18	25-Oct-18	RC
BI0087	696171.4	4547277	724.555	41	26-Oct-18	26-Oct-18	RC
BI0088	696180.7	4547273	725.051	41	26-Oct-18	26-Oct-18	RC
BI0089	696189.8	4547268	725.267	42	27-Oct-18	27-Oct-18	RC
BI0090	696198.9	4547264	725.682	48	27-Oct-18	27-Oct-18	RC
BI0091	696208	4547259	725.841	47	28-Oct-18	28-Oct-18	RC
B10092	696168.2	4547261	723.524	40	28-Oct-18	28-Oct-18	RC
B10093	696178.2	4547257	724.02	41	28-Oct-18	29-Oct-18	RC
BI0094	696187.1	4547252	724.212	41	29-Oct-18	29-Oct-18	RC
B10095	696162.9	4547247	722.569	38	30-Oct-18	30-Oct-18	RC
BI0096	696172.1	4547242	723.049	40	30-Oct-18	30-Oct-18	RC
B10097	696261	4547256	725.336	53	31-Oct-18	31-Oct-18	RC
BI0098	695982.8	4546577	682.591	35	5-Nov-18	5-Nov-18	RC
B10099	695981	4546564	682.713	30	6-Nov-18	6-Nov-18	RC
BI0100	695990.4	4546562	683.052	36	6-Nov-18	6-Nov-18	RC
BI0101	695999.3	4546559	683.203	47	7-Nov-18	7-Nov-18	RC
BI0102	696009.3	4546556	683.1	50	9-Nov-18	9-Nov-18	RC
BI0103	696019.3	4546554	682.299	60	9-Nov-18	10-Nov-18	RC
BI0104	696005.9	4546542	682.909	45	10-Nov-18	10-Nov-18	RC
BI0105	695978.4	4546548	682.899	40	11-Nov-18	11-Nov-18	RC
BI0106	695996.8	4546528	682.125	40	12-Nov-18	12-Nov-18	RC
BI0107	696006.5	4546526	682.764	40	12-Nov-18	12-Nov-18	RC
BI0108	696016.4	4546523	683.262	40	13-Nov-18	14-Nov-18	RC
BI0109	696027.1	4546520	684.057	40	14-Nov-18	19-Nov-18	RC

BI0110	696014.5	4546569	680.555	40	19-Nov-18	20-Nov-18	RC
BI0111	696005.2	4546576	680.573	45	21-Nov-18	21-Nov-18	RC
BI0112	696027.8	4546552	681.778	38	21-Nov-18	22-Nov-18	RC
BI0113	696301.6	4547370	729.133	43	22-Nov-18	22-Nov-18	RC
BI0114	696247	4547289	728.441	48	23-Nov-18	23-Nov-18	RC
BI0115	696295.6	4547332	728.414	42	23-Nov-18	24-Nov-18	RC
BI0116	696284	4547338	729.317	40	24-Nov-18	25-Nov-18	RC
BI0117	696240.7	4547334	729.509	46	27-Nov-18	28-Nov-18	RC
BI0283	696101.8	4546700	660.415	37	17-Nov-19	18-Jan-19	RC
BI0118	696306.4	4547176	710.613	59	9-Apr-19	9-Apr-19	RC
BI0119	696315.1	4547172	710.835	59	10-Apr-19	11-Apr-19	RC
BI0120	696296.2	4547143	707.861	59	11-Apr-19	11-Apr-19	RC
BI0121	696305.7	4547141	708.122	59	12-Apr-19	12-Apr-19	RC
BI0122	696285.7	4547121	707.015	56	13-Apr-19	13-Apr-19	RC
BI0123	696295.3	4547116	707.236	56	14-Apr-19	14-Apr-19	RC
BI0124	696277.2	4547091	704.224	53	22-Apr-19	22-Apr-19	RC
BI0125	696287	4547088	704.595	53	23-Apr-19	23-Apr-19	RC
BI0126	696264.2	4547064	702.082	50	23-Apr-19	24-Apr-19	RC
BI0127	696274.3	4547060	702.242	50	24-Apr-19	24-Apr-19	RC
BI0128	696251.8	4547037	700.514	48	25-Apr-19	25-Apr-19	RC
BI0129	696260.4	4547033	700.892	48	25-Apr-19	26-Apr-19	RC
BI0130	696244.7	4547006	700.421	48	26-Apr-19	26-Apr-19	RC
BI0131	696253.8	4547002	700.457	48	29-Apr-19	6-May-19	RC
BI0132	696228.3	4546981	700.26	47	6-May-19	6-May-19	RC
BI0133	696237.4	4546977	699.943	47	8-May-19	8-May-19	RC
BI0134	696200.9	4546961	700.41	47	8-May-19	9-May-19	RC
BI0135	696210.5	4546957	700.752	47	9-May-19	9-May-19	RC
BI0136	696219.4	4546952	700.624	47	9-May-19	9-May-19	RC
BI0137	696228.2	4546948	700.004	47	10-May-19	10-May-19	RC
BI0138	696237.1	4546944	700.254	47	13-May-19	13-May-19	RC
BI0139	696193.7	4546931	700.602	48	13-May-19	14-May-19	RC
BI0140	696202.7	4546927	700.487	48	14-May-19	14-May-19	RC
BI0141	696212	4546923	700.259	48	14-May-19	16-May-19	RC
BI0142	696221.3	4546919	700.137	48	16-May-19	16-May-19	RC
BI0143	696230.5	4546915	699.891	48	17-May-19	17-May-19	RC
BI0144	696239.5	4546911	699.914	48	17-May-19	20-May-19	RC
BI0145	696183.3	4546902	700.358	47	20-May-19	21-May-19	RC
BI0146	696071.3	4546587	688.644	37	21-May-19	21-May-19	RC
BI0147	696078.7	4546583	688.851	37	22-May-19	22-May-19	RC
BI0148	696087.9	4546579	688.953	37	22-May-19	22-May-19	RC
BI0149	696097	4546575	688.655	37	23-May-19	23-May-19	RC
BI0150	696105.7	4546570	688.518	37	23-May-19	23-May-19	RC
BI0151	696115	4546564	691.393	37	23-May-19	24-May-19	RC
BI0152	696082.7	4546617	693.621	37	24-May-19	24-May-19	RC
BI0153	696091.7	4546612	693.366	37	27-May-19	27-May-19	RC
BI0154	696100.6	4546608	693.588	37	27-May-19	27-May-19	RC
BI0155	696110	4546606	691.464	37	28-May-19	28-May-19	RC
BI0156	696119	4546602	691.198	37	28-May-19	28-May-19	RC
BI0157	696128.3	4546597	691.363	37	29-May-19	29-May-19	RC
BI0158	696081.3	4546649	690.068	37	29-May-19	29-May-19	RC

BI0159	696088.6	4546645	690.175	37	30-May-19	30-May-19	RC
BI0160	696097.5	4546641	690.032	37	30-May-19	30-May-19	RC
BI0161	696106.5	4546637	690.291	37	31-May-19	31-May-19	RC
BI0162	696115.7	4546633	690.659	37	31-May-19	3-Jun-19	RC
BI0163	696124.9	4546628	690.928	37	3-Jun-19	3-Jun-19	RC
BI0164	696134.1	4546624	691.13	37	4-Jun-19	4-Jun-19	RC
BI0165	696143.3	4546620	691.403	37	4-Jun-19	4-Jun-19	RC
BI0166	696098.1	4546678	689.553	37	4-Jun-19	5-Jun-19	RC
BI0167	696105.8	4546674	689.763	37	5-Jun-19	5-Jun-19	RC
BI0168	696114.6	4546670	689.75	37	5-Jun-19	6-Jun-19	RC
BI0169	696123.4	4546666	690.018	37	6-Jun-19	6-Jun-19	RC
BI0170	696132.9	4546661	690	37	10-Jun-19	10-Jun-19	RC
BI0171	696110.8	4546702	689.372	37	11-Jun-19	11-Jun-19	RC
BI0172	696118.6	4546698	689.538	37	11-Jun-19	12-Jun-19	RC
BI0173	696127.3	4546694	689.643	37	12-Jun-19	12-Jun-19	RC
BI0174	696136.8	4546690	689.811	37	12-Jun-19	12-Jun-19	RC
BI0175	696145.4	4546686	689.815	37	13-Jun-19	13-Jun-19	RC
BI0176	696132.9	4546724	689.85	37	13-Jun-19	13-Jun-19	RC
B10177	696139.1	4546721	689.853	37	14-Jun-19	14-Jun-19	RC
BI0178	696148.2	4546717	689.705	37	14-Jun-19	17-Jun-19	RC
BI0179	696156.8	4546713	689.406	37	17-Jun-19	17-Jun-19	RC
BI0180	696129.7	4546760	689.597	37	17-Jun-19	18-Jun-19	RC
BI0181	696137.5	4546756	689.489	37	18-Jun-19	18-Jun-19	RC
BI0182	696146.2	4546752	689.718	37	18-Jun-19	18-Jun-19	RC
BI0183	696155.3	4546748	690.15	37	19-Jun-19	19-Jun-19	RC
BI0184	696164.8	4546743	690.357	37	19-Jun-19	19-Jun-19	RC
BI0185	696173.8	4546739	689.987	37	20-Jun-19	20-Jun-19	RC
BI0186	696147.2	4546785	689.676	37	20-Jun-19	20-Jun-19	RC
BI0187	696155.1	4546782	689.777	37	21-Jun-19	21-Jun-19	RC
BI0188	696162.7	4546778	689.989	37	21-Jun-19	24-Jun-19	RC
BI0189	696170.4	4546774	689.742	37	24-Jun-19	24-Jun-19	RC
BI0190	696178	4546771	689.707	37	25-Jun-19	25-Jun-19	RC
BI0191	696185.5	4546767	689.67	37	25-Jun-19	26-Jun-19	RC
BI0192	696193.2	4546764	689.676	37	26-Jun-19	26-Jun-19	RC
BIO193	696200.7	4546760	690.063	37	27-Jun-19	27-Jun-19	RC
BI0194	696157.9	4546815	689.862	39	27-Jun-19	27-Jun-19	RC
BIO195	696167.6	4546810	689.556	37	28-Jun-19	28-Jun-19	RC
BI0196	696177.1	4546806	689.564	37	28-Jun-19	1-Jul-19	RC
BI0197	696185.9	4546802	689.518	37	1-Jul-19	1-Jul-19	RC
BIO198	696194.3	4546798	689.287	37	2-Jul-19	2-Jul-19	RC
BI0199	696203.3	4546794	689.594	37	2-Jul-19	2-Jul-19	RC
BIO200	696212.9	4546789	689.886	37	3-Jul-19	3-Jul-19	RC
BIO201	696166.6	4546841	689.968	37	3-Jul-19	4-Jul-19	RC
BIO202	696175.9	4546837	689.713	37	4-Jul-19	4-Jul-19	RC
BIO203	696185.3	4546832	689.692	37	4-Jul-19	5-Jul-19	RC
BIO204	696194.1	4546828	689.797	33	5-Jul-19	5-Jul-19	RC
BIO205	696203	4546824	689.4202	37	8-Jul-19	9-Jul-19	RC
BIO206	696212.7	4546819	689.508	37	9-Jul-19	9-Jul-19	RC
BIO207	696221.3	4546815	689.4265	37	10-Jul-19	10-Jul-19	RC
BIO208	696179.9	4546869	690.295	37	10-Jul-19	10-Jul-19	RC

BI0209	696189.5	4546864	690.335	37	11-Jul-19	11-Jul-19	RC
BI0210	696198.5	4546860	690.4799	37	11-Jul-19	12-Jul-19	RC
BI0211	696207.5	4546856	690.2299	37	12-Jul-19	15-Jul-19	RC
BI0212	696216.7	4546851	690.1499	37	15-Jul-19	16-Jul-19	RC
BI0213	696225.3	4546847	690.7311	37	16-Jul-19	16-Jul-19	RC
BI0214	696192.2	4546898	690.623	37	16-Jul-19	17-Jul-19	RC
BI0215	696201.2	4546894	690.596	37	17-Jul-19	17-Jul-19	RC
BI0216	696210.5	4546890	690.766	37	17-Jul-19	18-Jul-19	RC
BI0217	696219.3	4546886	690.647	37	22-Jul-19	22-Jul-19	RC
BI0218	696228.5	4546881	690.342	37	23-Jul-19	23-Jul-19	RC
BI0219	696238.1	4546877	690.485	37	23-Jul-19	23-Jul-19	RC
BI0220	696016	4546620	669.022	22	25-Jul-19	25-Jul-19	RC
BI0221	696025.7	4546618	668.595	22	26-Jul-19	25-Jul-19	RC
BI0222	696035	4546615	668.951	22	26-Jul-19	26-Jul-19	RC
BI0223	696008.4	4546591	668.429	22	26-Jul-19	29-Jul-19	RC
BI0224	696018	4546589	668.405	22	29-Jul-19	30-Jul-19	RC
BI0225	696027.5	4546586	668.151	22	30-Jul-19	30-Jul-19	RC
BI0226	696023.8	4546649	669.55	22	30-Jul-19	30-Jul-19	RC
BI0227	696033.8	4546646	669.401	22	31-Jul-19	31-Jul-19	RC
BI0228	696043.2	4546644	668.848	22	31-Jul-19	31-Jul-19	RC
BI0229	696020	4546635	669.394	22	1-Aug-19	1-Aug-19	RC
BI0230	696029.6	4546632	669.258	22	1-Aug-19	1-Aug-19	RC
BI0231	696050.8	4546642	668.622	22	1-Aug-19	1-Aug-19	RC
BD001	696228.4	4547290	709.487	12	9-Aug-19	13-Aug-19	DDH
BD002	696236.2	4547285	709.156	12	13-Aug-19	14-Aug-19	DDH
BD003	696219.5	4547277	709.496	12.1	14-Aug-19	15-Aug-19	DDH
BD004	696227.7	4547273	709.213	12.05	15-Aug-19	19-Aug-19	DDH
BD005	696209.6	4547265	709.643	12.15	20-Aug-19	20-Aug-19	DDH
BD006	696218	4547261	709.244	12.1	20-Aug-19	21-Aug-19	DDH
BD007	696263.2	4547300	709.534	12.1	21-Aug-19	21-Aug-19	DDH
BD008	696272.2	4547295	709.793	12.15	21-Aug-19	22-Aug-19	DDH
BD009	696280.4	4547291	709.739	12.25	22-Aug-19	23-Aug-19	DDH
BD010	696289.7	4547287	709.33	12.1	26-Aug-19	26-Aug-19	DDH
BD011	696269.7	4547313	709.696	12.1	26-Aug-19	26-Aug-19	DDH
BD012	696277.4	4547310	709.532	12.15	27-Aug-19	27-Aug-19	DDH
BD013	696285.8	4547306	709.738	12.45	27-Aug-19	28-Aug-19	DDH
BD014	696294.7	4547302	709.988	12.1	28-Aug-19	28-Aug-19	DDH
BD015	696276.2	4547328	709.836	12	28-Aug-19	28-Aug-19	DDH
BD016	696284.6	4547324	709.818	12.1	29-Aug-19	29-Aug-19	DDH
BD017	696292.3	4547320	709.653	12.15	29-Aug-19	29-Aug-19	DDH
BD018	696300.9	4547316	710.255	12.2	30-Aug-19	2-Sep-19	DDH
BD019	696286.5	4547339	709.519	12.2	2-Sep-19	2-Sep-19	DDH
BD020	696293.8	4547336	709.742	12.2	3-Sep-19	3-Sep-19	DDH
BD021	696300.9	4547332	709.924	12.1	3-Sep-19	3-Sep-19	DDH
BD022	696309.4	4547328	709.87	12.3	4-Sep-19	4-Sep-19	DDH
BD023	696295.4	4547350	709.856	12	4-Sep-19	4-Sep-19	DDH
BD024	696303.2	4547347	709.899	12.3	4-Sep-19	5-Sep-19	DDH
BD025	696311.5	4547342	709.991	12.1	5-Sep-19	5-Sep-19	DDH
BD026	696319.8	4547338	710.357	12.3	5-Sep-19	5-Sep-19	DDH
BIO232	696021.2	4546785	691.277	47	16-Sep-19	17-Sep-19	RC

BI0233	696011.7	4546787	691.288	47	17-Sep-19	18-Sep-19	RC
BIO234	696002.3	4546790	691.225	47	18-Sep-19	18-Sep-19	RC
BIO235	695992.1	4546793	691.032	47	18-Sep-19	18-Sep-19	RC
BIO236	696027.2	4546798	691.636	41	19-Sep-19	19-Sep-19	RC
BIO237	696017.2	4546800	691.498	47	19-Sep-19	19-Sep-19	RC
BIO238	696007.6	4546803	690.918	47	20-Sep-19	20-Sep-19	RC
BD027	696285	4547230	710.514	135.5	16-Sep-19	23-Sep-19	DDH
BIO239	695997.8	4546806	690.871	47	23-Sep-19	24-Sep-19	RC
BI0240	695988.1	4546808	690.742	47	25-Sep-19	25-Sep-19	RC
BIO241	696089.4	4547155	710.931	71	26-Sep-19	26-Sep-19	RC
BIO242	696079.8	4547157	711.02	71	27-Sep-19	27-Sep-19	RC
BIO243	696070	4547160	710.469	71	30-Sep-19	30-Sep-19	RC
BIO244	696060.2	4547162	710.306	71	1-Oct-19	1-Oct-19	RC
BIO245	696087.4	4547124	710.593	71	2-Oct-19	2-Oct-19	RC
BIO246	696077.6	4547127	709.823	49	2-Oct-19	3-Oct-19	RC
B10247	696067.4	4547130	709.077	71	4-Oct-19	4-Oct-19	RC
BIO248	696058.4	4547132	708.313	71	7-Oct-19	7-Oct-19	RC
BIO249	696085.4	4547094	709.905	70	8-Oct-19	8-Oct-19	RC
BIO250	696075.5	4547096	708.788	69	8-Oct-19	9-Oct-19	RC
BIO251	696065.8	4547099	707.487	68	9-Oct-19	9-Oct-19	RC
BIO252	696056.3	4547101	706.299	68	10-Oct-19	10-Oct-19	RC
BIO253	696081.4	4547064	709.258	70	11-Oct-19	11-Oct-19	RC
BIO254	696071.6	4547066	708.366	68	14-Oct-19	17-Oct-19	RC
BIO255	696062.3	4547069	707.639	67	17-Oct-19	17-Oct-19	RC
BIO256	696052.7	4547071	707.039	67	17-Oct-19	18-Oct-19	RC
BIO257	696077.9	4547066	708.625	70	18-Oct-19	22-Oct-19	RC
BIO258	696085.9	4547095	709.91	80	22-Oct-19	23-Oct-19	RC
BIO259	696074.1	4547035	709.757	70	23-Oct-19	24-Oct-19	RC
BIO260	696065.8	4547037	708.923	70	24-Oct-19	24-Oct-19	RC
BIO261	696056.3	4547039	707.456	66	25-Oct-19	25-Oct-19	RC
BIO262	696046.7	4547042	706.557	66	28-Oct-19	28-Oct-19	RC
BIO263	696095.5	4547107	710.113	72	29-Oct-19	29-Oct-19	RC
BI0264	696083.9	4547079	709.519	27	30-Oct-19	29-Oct-19	RC
BIO265	696058.1	4546949	689.597	47	30-Oct-19	30-Oct-19	RC
BIO266	696047.3	4546952	689.76	47	30-Oct-19	31-Oct-19	RC
BIO267	696037.1	4546951	689.951	47	31-Oct-19	31-Oct-19	RC
BIO268	696058.5	4546915	689.824	38	4-Nov-19	4-Nov-19	RC
BI0269	696057.3	4546915	689.738	47	5-Nov-19	5-Nov-19	RC
B10270	696046.6	4546918	689.679	47	6-Nov-19	6-Nov-19	RC
BI0271	696036.9	4546920	689.844	47	6-Nov-19	6-Nov-19	RC
BI0272	696027.3	4546923	689.776	47	7-Nov-19	7-Nov-19	RC
BI0273	696017.6	4546925	689.894	47	7-Nov-19	8-Nov-19	RC
BI0274	696051.1	4546885	690.941	40	8-Nov-19	11-Nov-19	RC
B10275	696050.2	4546886	690.963	47	11-Nov-19	11-Nov-19	RC
BI0276	696040.6	4546888	691.139	47	12-Nov-19	12-Nov-19	RC
B10277	696031	4546891	690.752	47	12-Nov-19	13-Nov-19	RC
B10278	696050.3	4546686	655.824	45	13-Nov-19	13-Nov-19	RC
BI0279	696046.3	4546687	655.865	49	14-Nov-19	14-Nov-19	RC
BIO280	696036.6	4546690	655.985	43	15-Nov-19	15-Nov-19	RC
BIO281	696027	4546692	655.911	44	16-Nov-19	16-Nov-19	RC

BIO282	696111.2	4546698	660.82	37	17-Nov-19	17-Nov-19	RC
BIO284	696092.1	4546703	659.448	48	18-Nov-19	18-Nov-19	RC
BIO285	696082.5	4546705	658.304	48	20-Nov-19	20-Nov-19	RC
BIO286	696073	4546708	657.515	38	20-Nov-19	21-Nov-19	RC
BIO287	696053.7	4546713	656.768	33	21-Nov-19	21-Nov-19	RC
BIO288	696063.2	4546710	656.882	35	21-Nov-19	22-Nov-19	RC
BIO289	696060.7	4546668	655.141	72	22-Nov-19	26-Nov-19	RC
BI0290	696062.6	4546732	656.209	33	27-Nov-19	27-Nov-19	RC
BI0291	696061.6	4546733	656.256	38	27-Nov-19	27-Nov-19	RC
BI0292	696072.2	4546730	656.264	34	28-Nov-19	29-Nov-19	RC
B10293	696081.6	4546727	656.721	35	29-Nov-19	29-Nov-19	RC
BI0294	696091	4546725	656.928	36	30-Nov-19	30-Nov-19	RC
BIO295	696060.2	4546746	655.908	35	1-Dec-19	1-Dec-19	RC
BIO296	696069.9	4546743	655.676	29	2-Dec-19	2-Dec-19	RC
B10297	696079.4	4546740	655.817	29	3-Dec-19	3-Dec-19	RC
BI0298	696089	4546738	656.21	29	10-Dec-19	10-Dec-19	RC
BI0299	696093.5	4546752	656.199	43	11-Dec-19	11-Dec-19	RC
BI0300	696102.7	4546750	655.776	54	11-Dec-19	12-Dec-19	RC
BI0301	696064.2	4546760	655.631	30	12-Dec-19	13-Dec-19	RC
BI0302	696065.4	4546760	655.617	38	13-Dec-19	13-Dec-19	RC
BI0303	696073.7	4546758	655.584	32	13-Dec-19	14-Dec-19	RC
BI0304	696083.5	4546755	655.638	34	14-Dec-19	15-Dec-19	RC
BI0305	696103.1	4546765	656.258	55	15-Dec-19	16-Dec-19	RC
BI0306	696112.7	4546762	655.835	67	17-Dec-19	17-Dec-19	RC
BI0307	696121.8	4546760	656.176	67	7-Jan-20	8-Jan-20	RC
BI0308	696132.3	4546757	656.49	67	8-Jan-20	9-Jan-20	RC
BI0309	696124.4	4546775	656.013	66	9-Jan-20	10-Jan-20	RC
BI0310	696121	4546695	660.815	40	13-Jan-20	13-Jan-20	RC
BI0312	696105.2	4546780	655.789	57	13-Jan-19	14-Jan-20	RC
BI0311	696036.7	4546827	680.109	35	14-Jan-20	15-Jan-20	RC
BI0313	696036.8	4546827	680.064	36	15-Jan-20	16-Jan-20	RC
BI0314	696027.1	4546830	680.091	36	16-Jan-20	16-Jan-20	RC
BI0315	696017.4	4546833	680.024	36	16-Jan-20	17-Jan-20	RC
BI0316	696007.9	4546835	680.431	36	17-Jan-20	20-Jan-20	RC
BI0317	696058.6	4546977	690.117	56	17-Jan-20	22-Jan-20	RC
BI0318	696057.4	4546977	690.199	47	22-Jan-20	22-Jan-20	RC
BI0319	696048.6	4546979	690.263	47	22-Jan-20	23-Jan-20	RC
BI0320	696038.8	4546982	690.49	47	23-Jan-20	24-Jan-20	RC
BI0321	696029.4	4546984	690.419	47	24-Jan-20	27-Jan-20	RC
BI0322	696042.6	4546857	680.16	40	27-Jan-20	28-Jan-20	RC
BI0323	696041.6	4546857	680.198	36	28-Jan-20	28-Jan-20	RC
BI0324	696033.2	4546859	679.808	38	28-Jan-20	29-Jan-20	RC
BI0325	696023.1	4546862	680.056	36	29-Jan-20	30-Jan-20	RC
BI0326	696013.7	4546864	679.905	36	29-Jan-20	30-Jan-20	RC
BI0327	696004.1	4546867	679.773	36	29-Jan-20	31-Jan-20	RC
BI0328	695994.1	4546870	679.844	56	31-Jan-20	3-Feb-20	RC
BI0343	696146	4546816	654.749	88	3-Mar-20	3-Feb-20	RC
BI0329	696021.5	4546893	679.936	36	3-Feb-20	4-Feb-20	RC
BI0330	696016	4546895	679.99	58	4-Feb-20	5-Feb-20	RC
BI0344	696155.8	4546813	654.524	88	4-Mar-20	5-Feb-20	RC

BI0332	695998.1	4546837	679.433	36	5-Feb-20	6-Feb-20	RC
BI0331	695988.6	4546840	680.157	58	6-Feb-20	7-Feb-20	RC
BI0333	696114.6	4546778	656.058	77	7-Feb-20	10-Feb-20	RC
BI0334	696120.7	4546792	655.386	80	10-Feb-20	12-Feb-20	RC
BI0336	696111	4546795	655.398	20	17-Feb-20	17-Feb-20	RC
BI0335	696092.9	4546766	656.513	52	17-Feb-20	18-Feb-20	RC
BI0337	696127.7	4546805	654.881	21	18-Feb-20	18-Feb-20	RC
BI0338	696137.8	4546802	655.294	85	18-Feb-20	19-Feb-20	RC
BI0339	696147.8	4546802	654.73	88	19-Feb-20	20-Feb-20	RC
BI0340	696118	4546807	654.938	18	24-Feb-20	25-Feb-20	RC
BI0341	696157.7	4546799	654.453	88	25-Feb-20	27-Feb-20	RC
BI0342	696136.2	4546818	654.752	88	28-Feb-20	2-Mar-20	RC
BI0345	696143.6	4546832	654.194	88	6-Mar-20	7-Mar-20	RC
BI0346	696153.2	4546829	653.846	93	7-Mar-20	8-Mar-20	RC
BI0347	696163.1	4546827	653.799	95	8-Mar-20	10-Mar-20	RC
BI0348	696146.2	4546850	654.295	82	10-Mar-20	11-Mar-20	RC
BI0349	696091.6	4546731	655.195	88	16-Mar-20	17-Mar-20	RC
BI0350	696101.6	4546729	655.31	88	19-Mar-20	19-Mar-20	RC
BI0351	696110.1	4546723	655.212	88	21-Mar-20	20-Mar-20	RC
BI0352	696155.6	4546847	654.287	86	22-Mar-20	22-Mar-20	RC
BI0353	696165.6	4546844	654.712	92	22-Mar-20	24-Mar-20	RC
BI0354	696151	4546736	660.691	36	24-Mar-20	25-Mar-20	RC
BI0355	696158.7	4546732	660.952	36	25-Mar-20	25-Mar-20	RC
BI0356	696110.5	4546793	655.487	77	13-Apr-20	16-Apr-20	RC
BI0357	696107.6	4546810	654.951	68	16-Apr-20	21-Apr-20	RC
BI0358	696108.7	4546810	655.108	75	21-Apr-20	23-Apr-20	RC
BI0359	696083.6	4546770	656.133	53	23-Apr-20	24-Apr-20	RC
BI0360	696084.5	4546770	656.114	20	24-Apr-20	25-Apr-20	RC
BI0361	696095.2	4546783	655.477	33	25-Apr-20	25-Apr-20	RC
BI0362	696096.3	4546782	655.514	59	26-Apr-20	26-Apr-20	RC
BI0363	696101.1	4546796	655.45	81	26-Apr-20	28-Apr-20	RC
BI0364	696102.1	4546796	655.535	67	28-Apr-20	29-Apr-20	RC
BI0365	696117.9	4546807	655	31	29-Apr-20	4-May-20	RC
BI0366	696127.7	4546804	654.88	16	4-May-20	6-May-20	RC
BI0367	696117.8	4546826	654.75	28	6-May-20	8-May-20	RC
BI0368	696133.8	4546835	654.995	15	8-May-20	9-May-20	RC
BI0369	696053.7	4546643	647.216	57	9-May-20	10-May-20	RC
BI0370	696063.8	4546639	647.348	57	10-May-20	10-May-20	RC
BI0371	696072.7	4546635	647.381	57	10-May-20	11-May-20	RC
BI0372	696054.9	4546657	647.322	57	11-May-20	12-May-20	RC
BI0373	696064.1	4546654	647.373	57	12-May-20	13-May-20	RC
BI0374	696073.8	4546651	647.98	57	13-May-20	13-May-20	RC
BI0375	696101.7	4547389	723.537	90	26-May-20	27-May-20	RC
BI0376	696072	4547349	722.362	75	28-May-20	28-May-20	RC
BI0377	696115.1	4547444	723.903	120	29-May-20	31-May-20	RC
BI0378	696133.2	4547477	721.404	51	1-Jun-20	2-Jun-20	RC
BD028	696266.9	4546744	694.717	370	6-May-21	18-May-21	DDH
BD029	696273.8	4546807	695.077	365.2	19-May-21	28-May-21	DDH
BD030	696287.2	4546953	701.937	347	31-May-21	8-Jun-21	DDH
BD031	696210.7	4546668	691.363	281	8-Jun-21	16-Jun-21	DDH

BD032	696180.4	4546571	689.131	299	28-Jan-22	8-Feb-22	DDH
BD033	696196.2	4546606	689.638	322.7	9-Feb-22	17-Feb-22	DDH
BD034	696363.2	4547203	711.129	283.9	18-Feb-22	25-Feb-22	DDH
BD035	696347.3	4547158	710.865	251	28-Feb-22	7-Mar-22	DDH
BD036	696347.8	4547158	711.023	300	7-Mar-22	15-Mar-22	DDH
BD037	696381.3	4547089	704.772	329.1	15-Mar-22	23-Mar-22	DDH
BD038	696376.3	4547041	702.573	330	25-Mar-22	30-Mar-22	DDH
BD039	696374.6	4547254	712.8	275	30-Mar-22	4-Apr-22	DDH
BD040	696152.9	4546513	687.837	260	5-Apr-22	9-Apr-22	DDH
BD041	696220.9	4546603	691.974	440.1	12-May-22	26-May-22	DDH
BD042	696273.1	4546740	694.729	450	27-May-22	8-Jun-22	DDH
BD043	696325.2	4546791	695.409	474.5	9-Jun-22	23-Jun-22	DDH
BD044	696401.3	4546833	691.672	521	24-Jun-22	14-Jul-22	DDH
BD045	696427.4	4547512	712.664	293.9	19-Jul-22	31-Jul-22	DDH
BD046	696415.4	4547561	715.455	344	1-Aug-22	23-Sep-22	DDH
BD047	696438.8	4547618	719.573	245	23-Sep-22	6-Oct-22	DDH
BD048	696072.9	4546393	686.956	224	7-Oct-22	19-Oct-22	DDH
BD049	696506.1	4547441	705.869	380	20-Oct-22	7-Nov-22	DDH
BD050	696436.8	4547351	708.828	329	8-Nov-22	21-Nov-22	DDH
BD051	696431.6	4547291	707.514	329	23-Nov-22	7-Dec-22	DDH
BD052	696410.2	4547198	706.335	361.9	31-Jan-23	20-Feb-23	DDH
BD053	696296.9	4546801	693.475	380	21-Feb-23	10-Mar-23	DDH

APPENDIX C

Minimum Composite Width : 1.00			DDH	RC	All
Maximum Internal Dilution : 2.00		TOTAL m	2229.1	2665	4894.1
Cutoff Criteria --> Field : wo3_pct	Minimum Grade : 0.050	Intervals	1023	836	1859
		grade (\%WO3)	0.452	0.326	0.383
		1115 interceps			
		1387 interceps			
		Thickness calcu			

Hole Id	Easting (m)	Northing (m)	Elevation (m)	Depth (m)	Azimuth (0)	Dip (ㅇ)	From (m)	To (m)	Length (m)	True Tickness (m)	WO3 (\%)
BAR01	696200.653	4547288.57	726.932	161.65	272	-44	80.4	81.4	1	0.87	0.100
							115.65	116.65	1	0.87	0.609
							141.6	144.6	3	2.60	0.051
BAR02	696313.03	4547289.14	722.43	321	281	-45.5	2.1	3.15	1.05	0.91	0.050
							9.75	12.75	3	2.60	0.103
							37.1	38.1	1	0.87	0.227
							43	44	1	0.87	0.164
							53	54	1	0.87	0.820
							57	58	1	0.87	0.227
							66	69	3	2.60	0.164
							79	82	3	2.60	0.397
							100	102	2	1.73	0.127
							109	111	2	1.73	0.410
							117	118	1	0.87	0.085
							125	129	4	3.46	0.473
						incl.	125	126	1	0.87	1.286
							131	132	1	0.87	0.112
							159	160	1	0.87	0.076
							163	164	1	0.87	0.391
							185	186	1	0.87	0.504
							203	204	1	0.87	0.089
							232	233	1	0.87	0.214
							237	238	1	0.87	0.058
							244	245	1	0.87	0.088
							247	250	3	2.60	0.127
							253	256	3	2.60	0.847
							275	276	1	0.87	0.479
							280	281	1	0.87	0.060
							283	284	1	0.87	0.088
							295	298	3	2.60	0.628
						incl.	295	296	1	0.87	1.816
							301	302	1	0.87	0.082
BAR03	696216.52	4547484.79	727.22	161.05	277	-53.5	23.15	24.4	1.25	1.08	0.095
							36.45	37.45	1	0.87	0.232
							42.3	43.3	1	0.87	0.325
							101.5	109.2	7.7	6.67	0.503
						incl.	101.9	102.9	1	0.87	2.421
							144.3	145.4	1.1	0.95	0.130
BAR04	696223.72	4547689.02	731.26	160	279	-57	31.95	35.7	3.75	3.25	0.250
							110.35	111.7	1.35	1.17	0.317
							122	122.9	0.9	0.78	1.576

							142.5	143.05	0.55	0.48	4.477
BAR05	696262.58	4547477.72	730.02	161.85	278	-39	34.8	36	1.2	1.04	0.110
							38.9	39.9	1	0.87	0.072
							133.7	135.35	1.65	1.43	0.373
BAR06	696328.5	4547476.2	726.16	280.5	274	-54	65.75	69	3.25	2.81	0.088
							160.2	161.4	1.2	1.04	0.143
							181.6	182.75	1.15	1.00	0.556
							239	240	1	0.87	0.380
							245	246	1	0.87	0.668
							253	254	1	0.87	0.071
							259	260	1	0.87	0.085
							278	280	2	1.73	0.221
BAR07	696294.07	4547685.06 729.91 241.85 4546825.05 705					No significant intersections				
BAR08	695277.72	4546825.05	705	139.5	280	-44	33.45	34.5	1.05	0.91	0.401
							36.55	38.6	2.05	1.78	0.113
							50.3	51.4	1.1	0.95	0.129
							96.65	98.8	2.15	1.86	1.170
						incl.	97.9	98.8	0.9	0.78	2.711
							107.45	109.45	2	1.73	0.439
BAR09	696218.319	4547432.891	727.828	150	277	-54	32	33	1	0.87	0.164
							88	89	1	0.87	0.076
							101	102	1	0.87	0.071
							108	109	1	0.87	0.366
							111	112	1	0.87	0.076
							119	121	2	1.73	3.040
						incl.	120	121	1	0.87	5.385
							123	124	1	0.87	0.113
							138	139	1	0.87	0.189
BAR10	696220.701	4547535.035	727.524	150.8	280	-55	35	36	1	0.87	0.101
							58	59	1	0.87	0.189
							125	127	2	1.73	2.781
						incl.	125	126	1	0.87	5.208
							143	144	1	0.87	0.063
BAR11	696214.366	4547587.394	728.007	150.3	275	-52.5	78	79	1	0.87	0.052
							114	115	1	0.87	0.315
BAR12	696228.322	4547644.664	730.037	150	277	-54	26	27	1	0.87	0.063
							47	48	1	0.87	1.236
							70	71	1	0.87	0.240
							128	130	2	1.73	1.589
							136	137	1	0.87	0.177
BAR13	696235.113	4547735.483	733.323	157.5	283	-54	123	125	2	1.73	3.815
							132	133	1	0.87	0.088
BAR14	696246.86	4547795.626	734.357	150.1	288	-57			ifican	0.85	
BAR15	696251.346	4547833.679	732.192	150.2	282	-55	122	124	2	1.73	0.404
BAR16	696321.617	4547958.469	726.103	210.5	279	-54	43	44	1	0.87	0.151
							65	66	1	0.87	0.063
							91	92	1	0.87	1.375
							185	186	1	0.87	0.303
							202	206	4	3.46	0.653
						incl.	205	206	1	0.87	1.879

BAR17	696266.807	4547874.701	728.802	150.45	280	-54	125	127	2	1.73	0.870
							131	133	2	1.73	0.183
BAR18	696329.201	4547818.908	733.043	290.2	273	-55	91	92	1	0.87	0.643
							254	255	1	0.87	0.303
							287	288	1	0.87	0.088
BAR19	696284.415	4547562.051	728.605	285.45	279	-54	13	14	1	0.87	0.113
							96	104	8	6.93	0.286
						incl.	96	97	1	0.87	1.387
							121	124	3	2.60	0.086
							129	130	1	0.87	0.088
							161	162	1	0.87	0.252
							184	185	1	0.87	0.593
							221	223	2	1.73	0.158
							247	248	1	0.87	0.113
							255	256	1	0.87	0.189
							268	271	3	2.60	0.355
BAR20	696149.02	4546681.782	697.544	213.9	283	-54	79	80	1	0.87	0.315
							97	98	1	0.87	0.113
							127	128	1	0.87	0.265
							137	140	3	2.60	1.016
						incl.	138	139	1	0.87	1.840
BAR21	696220.097	4547388.544	726.509	172.2	286	-54	70	71	1	0.87	0.479
							98	99	1	0.87	0.101
							101	102	1	0.87	0.076
							113	114	1	0.87	0.063
							117	118	1	0.87	0.088
							122	126	4	3.46	0.168
							129	130	1	0.87	1.602
							133.5	134.5	1	0.87	0.202
							144	145	1	0.87	0.088
							153	154	1	0.87	0.088
BAR22	696215.608	4547336.242	726.899	181.2	282	-54	10	21	11	9.53	0.068
							30	31	1	0.87	0.214
							35	36	1	0.87	0.567
							71	72	1	0.87	0.063
							79	80	1	0.87	0.126
							100	101	1	0.87	0.378
							110	111	1	0.87	0.643
							118	119	1	0.87	0.151
							132	138	6	5.20	0.145
							152	153	1	0.87	0.139
							156	157	1	0.87	0.050
							166	168	2	1.73	0.328
							170	171	1	0.87	0.113
							180	181.2	1.2	1.04	0.126
BAR23	696173.529	4547234.155	722.729	160	284	-58	22	23	1	0.87	0.353
							68	69	1	0.87	0.065
							71	72	1	0.87	0.068
							77	78	1	0.87	0.391
							87	91	4	3.46	0.088

						incl.	183	191	8	6.93	0.335
							190	191	1	0.87	2.107
							201	202	1	0.87	0.929
							205	206	1	0.87	1.109
BAR36	696275.958	4547011.768	715.235	205.4	282.8	-58.3	74	75	1	0.87	0.252
							87	88	1	0.87	0.378
							103	104	1	0.87	0.092
							117	121	4	3.46	0.256
							124.9	129	4.1	3.55	0.628
							137	139	2	1.73	0.435
							142	143	1	0.87	0.064
							145	151	6	5.20	0.305
							169	172	3	2.60	0.092
							175	181	6	5.20	0.322
						incl.	175	176	1	0.87	1.185
							204	205	1	0.87	0.845
BAR37	696309.8	4547107.451	714.776	217.4	290	-56	88	89	1	0.87	0.202
							106	108	2	1.73	0.115
							124	126	2	1.73	0.276
							141	144	3	2.60	0.043
							151	154	3	2.60	0.142
							178	181	3	2.60	0.096
							192	193	1	0.87	0.151
							205	208	3	2.60	0.158
BAR38	696099.286	4546557.55	688.277	175.4	291	-57	98	99	1	0.87	2.812
							109	112	3	2.60	0.171
							115	116	1	0.87	0.555
							119	120	1	0.87	0.085
							124	125	1	0.87	0.189
							132	133	1	0.87	0.189
							137	138	1	0.87	0.139
							148	149	1	0.87	0.240
BAR39	696280.204	4547297.103	726.76	145.1	287	-45	10	11	1	0.87	4.805
							20	21	1	0.87	0.113
							28	29	1	0.87	0.070
							35	36	1	0.87	0.290
							50	51	1	0.87	0.668
							54	55	1	0.87	0.139
							58	63	5	4.33	0.093
							65	66	1	0.87	0.116
							74	75	1	0.87	0.240
							78	79	1	0.87	0.164
							82	84	2	1.73	0.328
							89	93	4	3.46	0.742
						incl.	91	92	1	0.87	2.699
							104	105	1	0.87	0.067
							109	110	1	0.87	0.087
							131	134	3	2.60	2.289
						incl.	132	133	1	0.87	6.356
BAR40	696352.39	4547283.516	713.685	223.3	285.5	-44.5	37	38	1	0.87	0.113

							64	65	1	0.87	0.227
							68	69	1	0.87	0.094
							89	92	3	2.60	0.212
							96	97	1	0.87	0.080
							100	101	1	0.87	0.085
							111	114	3	2.60	0.111
							117	119	2	1.73	0.991
						incl.	118	119	1	0.87	1.879
							148	149	1	0.87	0.102
							153	154	1	0.87	1.526
							158	168	10	8.66	0.140
							174	176	2	1.73	0.385
							186	187	1	0.87	0.103
							200	202	2	1.73	0.171
							212	213	1	0.87	0.066
BAR41	696370.1	4547402.478	715.535	174.8	285	-45	45	48	3	2.60	0.183
							61	65	4	3.46	0.480
						incl.	61	62	1	0.87	1.450
							69	70	1	0.87	0.214
							93	94	1	0.87	0.126
							101	102	1	0.87	1.059
							113	117	4	3.46	0.441
						incl.	113	114	1	0.87	1.475
							123	129	6	5.20	0.756
						incl.	123	124	1	0.87	3.481
							142	143	1	0.87	0.139
							147	148	1	0.87	0.252
BAR42	696382.02	4547354.001	712.715	199.25	286	-45	44	45	1	0.87	0.164
							66	67	1	0.87	3.607
							121	122	1	0.87	0.083
							132	133	1	0.87	0.870
							158	159	1	0.87	0.094
BAR43	696318.42	4547417.416	724.319	169.6	285	-44	58	60	2	1.73	0.271
							68	69	1	0.87	0.126
							72	73	1	0.87	0.303
							82	83	1	0.87	0.593
BAR44	696290.805	4547255.188	722.49	115.3	290	-44.5	13	14	1	0.87	0.126
							18	19	1	0.87	0.063
							21	22	1	0.87	1.248
							28	29	1	0.87	0.068
							47	48	1	0.87	0.151
							55	56	1	0.87	0.177
							70	76	6	5.20	1.818
						incl.	70	71	1	0.87	9.609
							89	98	9	7.79	0.749
						incl.	89	90	1	0.87	1.248
						incl.	95	96	1	0.87	3.695
							101	102	1	0.87	0.100
							106	108	2	1.73	0.082
							111	112	1	0.87	0.492

BAR45	696297.888	4547325.869	725.436	111.3	287	-45.5	12	13	1	0.87	0.656
							17	18	1	0.87	0.164
							34	38	4	3.46	0.377
						incl.	37	38	1	0.87	1.122
							54	55	1	0.87	0.227
							61	62	1	0.87	0.530
							72	73	1	0.87	0.189
							78	79	1	0.87	0.567
							92	93	1	0.87	0.265
BAR46	696350.058	4546857.8	692.808	310.3	287.5	-50.2	234	235	1	0.87	0.248
							240	242	2	1.73	0.318
							245	246	1	0.87	0.098
							291	292	1	0.87	1.079
							299	300	1	0.87	1.064
							304	310	6	5.20	0.434
						incl.	306	307	1	0.87	1.553
BAR46BIS	696352.023	4546862.66	693.025	443	287.8	-51.6	219	220	1	0.87	0.124
							248	249	1	0.87	0.063
							260	261	1	0.87	0.202
							268	269	1	0.87	0.273
							279	280	1	0.87	0.072
							287	288	1	0.87	0.709
							303	304	1	0.87	0.093
							312	313	1	0.87	0.134
							317	318	1	0.87	0.385
							321	322	1	0.87	0.994
							349	350	1	0.87	0.408
							352	353	1	0.87	0.056
							365	366	1	0.87	0.861
							369	370	1	0.87	0.110
							372	376	4	3.46	0.423
						incl.	306	307	1	0.87	1.553
							411	412	1	0.87	0.625
BAR47	696232.941	4546831.26	710.871	270.1	288	-62	73	74	1	0.87	0.277
							106	107	1	0.87	0.366
							128	129	1	0.87	0.088
							136	140	4	3.46	0.080
							168	181	13	11.26	0.281
							184	185	1	0.87	0.202
							188	195	7	6.06	0.299
							198	219	21	18.19	0.376
						incl.	205	207	2	1.73	1.085
						incl.	208	209	1	0.87	1.602
						incl.	214	215	1	0.87	1.829
							224	225	1	0.87	0.340
BAR48	696232.227	4546831.42	710.876	219.8	291	-47.5	65	66	1	0.87	0.088
							133	134	1	0.87	0.076
							141	143	2	1.73	0.202
							146	154	8	6.93	1.535
						incl.	146	147	1	0.87	6.129

							110	112	2	1.73	0.341
							120	125	5	4.33	0.219
							130	133	3	2.60	0.164
							136	137	1	0.87	0.050
							140	153	13	11.26	0.451
						incl.	152	153	1	0.87	2.358
							157	158	1	0.87	0.063
							160	163	3	2.60	0.769
						incl.	160	161	1	0.87	2.207
							166	176	10	8.66	0.115
							178	179	1	0.87	0.063
							189	190	1	0.87	0.050
							191	192	1	0.87	0.050
							194	197	3	2.60	0.366
							227	228	1	0.87	0.643
BAR70	696054.03	4547043.386	710.382	279.7	103	-52.3	55	56	1	0.87	0.643
							70	72	2	1.73	0.492
							78	80	2	1.73	0.593
							96	97	1	0.87	0.139
							114	116	2	1.73	0.057
							123	124	1	0.87	0.076
							153	155	2	1.73	0.069
							160	162	2	1.73	0.063
							172	173	1	0.87	0.050
							188	189	1	0.87	0.076
							200	201	1	0.87	0.050
							204	205	1	0.87	0.492
							208	209	1	0.87	0.303
							218	219	1	0.87	0.202
							222	223	1	0.87	0.101
							229	235	6	5.20	0.250
							238	239	1	0.87	0.113
							245	248	3	2.60	0.071
BAR71	696319.482	4546894.124	696.005	260.6	285.5	-51.3	162	163	1	0.87	0.113
							169	170	1	0.87	0.126
							190	200	10	8.66	0.149
							204	205	1	0.87	0.252
							211	212	1	0.87	0.177
							215	223	8	6.93	0.235
						incl.	215	216	1	0.87	1.400
							228	231	3	2.60	0.105
							234	235	1	0.87	0.050
							244	245	1	0.87	1.879
							252	253	1	0.87	0.353
BAR72	696312.402	4547226.581	717.67	157	284.5	-48	21	22	1	0.87	0.214
							31	32	1	0.87	0.265
							47	48	1	0.87	0.189
							58	59	1	0.87	0.088
							67	68	1	0.87	0.050
							72	83	11	9.53	0.357

BD012	696,277.364	4,547,309.880	709.53	12.15	295	-40	No significant intersections				
BD013	696,285.806	4,547,306.074	709.74	12.45	295	-40	No significant intersections				
BD014	696,294.725	4,547,301.960	709.99	12.10	295	-40	No significant intersections				
BD015	696,276.229	4,547,328.129	709.84	12.00	295	-40	3.7	12	8.3	7.19	0.140
BD016	696,284.590	4,547,323.678	709.82	12.10	295	-40	3.3	4.4	1.1	0.95	0.802
BD017	696,292.297	4,547,320.175	709.65	12.15	295	-40	3.65	4.8	1.15	1.00	0.050
BD018	696,300.921	4,547,316.113	710.26	12.20	295	-40	8.9	9.9	1	0.87	0.086
BD019	696,286.514	4,547,339.431	709.52	12.20	295	-40	5.1	6.4	1.3	1.13	0.189
BD019							11.1	12.2	1.1	0.95	0.147
BD020	696,293.768	4,547,335.745	709.74	12.20	295	-40	0	6.4	6.4	5.54	0.146
BD021	696,300.863	4,547,332.089	709.92	12.10	295	-40	2.1	3.1	1	0.87	0.076
							9.1	10.9	1.8	1.56	0.054
BD022	696,309.428	4,547,327.825	709.87	12.30	295	-40	No significant intersections				
BD023	696,295.389	4,547,349.619	709.86	12.00	295	-40	No significant intersections				
BD024	696,303.248	4,547,346.897	709.90	12.30	295	-40	7.05	8.1	1.05	0.91	1.254
BD025	696,311.522	4,547,342.453	709.99	12.10	295	-40	No significant intersections				
BD026	696,319.792	4,547,338.076	710.36	12.30	295	-40	No significant intersections				
BD027	696,284.976	4,547,230.076	710.51	135.50	295	-45	4.15	6.35	2.2	1.91	0.107
							11.85	12.9	1.05	0.91	0.090
						incl.	20.15	21.05	0.9	0.78	1.289
							28.8	30	1.2	1.04	1.243
							53.75	56.75	3	2.60	0.440
							60.9	61.9	1	0.87	0.094
							72.05	75.15	3.1	2.68	0.104
							78.7	79.7	1	0.87	0.259
							94.3	102.45	8.15	7.06	0.197
							108.2	109.2	1	0.87	0.152
							119.5	120.6	1.1	0.95	0.098
BD028	696,266.942	4,546,744.239	694.72	370.00	285	-55	17.55	18.7	1.15	1.00	0.140
							170.7	171.7	1	0.87	0.051
							222.65	224.65	2	1.73	0.139
							225.65	237.8	12.15	10.52	0.271
						incl.	230.8	231.8	1	0.87	1.513
							246.15	252.25	6.1	5.28	0.342
						incl.	246.15	247.15	1	0.87	1.339
							257.4	259.4	2	1.73	0.139
							272.15	273.15	1	0.87	0.111
							286.5	288.5	2	1.73	0.349
							317	318	1	0.87	1.289
BD029	696,273.795	4,546,806.860	695.08	365.20	285	-63	191.4	192.4	1	0.87	0.166
							227.75	228.75	1	0.87	0.053
							249.35	250.35	1	0.87	0.634
							265.6	266.65	1.05	0.91	2.373
							272.45	273.45	1	0.87	0.291
							277.15	281	3.85	3.33	0.347
						incl.	280	281	1	0.87	1.263
							301.55	302.55	1	0.87	0.059
							315.75	316.75	1	0.87	4.765
							320.5	321.5	1	0.87	0.176
							335.4	336.4	1	0.87	1.456

						incl.	339.85	340.9	1.05	0.91	0.262
							350.2	351.2	1	0.87	0.364
							356.2	358.2	2	1.73	1.247
							356.2	357.2	1	0.87	2.061
BD030	696,287.201	4,546,952.517	701.94	347.00	285	-71	195.8	196.9	1.1	0.95	0.135
							212.55	213.65	1.1	0.95	0.339
							223.45	224.5	1.05	0.91	0.773
							263.05	270.2	7.15	6.19	0.278
							281.5	282.5	1	0.87	0.091
							284.05	285.05	1	0.87	0.058
							336.3	337.3	1	0.87	0.499
BD031	696,210.743	4,546,668.104	691.36	281.00	285	-59	7.4	8.4	1	0.87	0.232
							19.5	20.5	1	0.87	0.210
							185.95	186.95	1	0.87	0.075
							228.75	230.75	2	1.73	1.549
							235.8	236.8	1	0.87	3.383
							251.75	257	5.25	4.55	0.358
						incl.	253.85	254.75	0.9	0.78	1.469
							263.9	265	1.1	0.95	0.253
BD032	696,180.392	4,546,570.902	689.13	299.00	285	-55	206	207.1	1.1	0.95	0.070
							227.4	233.6	6.2	5.37	0.583
						incl.	229.75	230.75	1	0.87	1.523
							235.8	236.8	1	0.82	3.383
							236.9	240.85	3.95	3.42	0.639
							243.9	245	1.1	0.95	0.081
							247.1	248.1	1	0.87	0.069
							252.1	255.15	3.05	2.64	0.198
						incl.	253.85	254.75	0.9	0.78	1.469
BD033	696,196.223	4,546,605.860	689.64	322.70	285	-51	191.75	192.85	1.1	0.95	0.062
							198.85	201.05	2.2	1.91	0.095
							207.9	209.8	1.9	1.65	0.319
							212.95	216.9	3.95	3.42	0.187
							220.05	224.05	4	3.46	0.934
						incl.	220.05	221.1	1.05	0.91	2.236
							226.1	227.3	1.2	1.04	0.133
							234.9	236.95	2.05	1.78	0.532
							239.95	245.15	5.2	4.50	0.735
							239.95	241	1.05	0.91	1.514
							271.4	272.4	1	0.87	0.125
							294.4	295.5	1.1	0.95	7.901
							315.55	320.6	5.05	4.37	0.156
BD034	696,363.236	4,547,203.211	711.13	283.90	285	-51	61.25	62.25	1	0.87	0.205
							80.05	81.05	1	0.87	0.328
							114.45	115.45	1	0.87	0.123
							117.45	118.45	1	0.87	0.109
							121.6	125.65	4.05	3.51	0.106
							141.6	149.65	8.05	6.97	0.173
							159.85	160.9	1.05	0.91	0.084
							177.65	178.7	1.05	0.91	0.432
							181.55	182.75	1.2	1.04	0.362

							133	134	1	0.87	0.162
							143.2	145	1.8	1.56	0.067
							147	149	2	1.73	0.211
							152	155	3	2.60	0.350
							157.05	158.1	1.05	0.91	0.238
							160.35	161.35	1	0.87	0.166
							168.6	178.2	9.6	8.31	0.073
							209.2	211.2	2	1.73	1.083
						incl.	209.2	210.2	1	0.87	1.813
							216.7	217.7	1	0.87	0.061
							222.85	223.9	1.05	0.91	0.315
BD040	696,152.884	4,546,513.258	687.84	260.00	280	-49	114.5	115.5	1	0.87	0.744
							126.4	127.45	1.05	0.91	0.087
							137.45	139.65	2.2	1.91	0.710
						incl.	137.45	138.55	1.1	0.95	1.207
							155.6	156.7	1.1	0.95	0.067
							161.95	162.95	1	0.87	0.684
							180.55	182.55	2	1.73	0.464
							194.6	195.6	1	0.87	0.578
							199.6	200.7	1.1	0.95	0.598
							215	216.05	1.05	0.91	2.011
							228.4	229.4	1	0.87	1.303
							164.3	165.3	1	0.87	0.124
BD041	696,220.907	4,546,602.509	691.97	440.10	280	-63	256.7	257.7	1	0.87	0.367
							267.1	268.1	1	0.87	0.086
							306.4	307.45	1.05	0.91	0.129
							314.75	318.05	3.3	2.86	0.603
						incl.	314.75	316.05	1.3	1.13	1.306
							329.1	330.1	1	0.87	0.626
							378.8	379.8	1	0.87	0.089
BD042	696,273.131	4,546,739.905	694.73	450.00	280	-61	271.65	278	6.35	5.50	1.245
						incl.	273.85	275	1.15	1.00	3.323
						incl.	277	278	1	0.87	3.922
							298.5	299.7	1.2	1.04	0.465
							357.65	358.65	1	0.87	0.179
							401.2	402.3	1.1	0.95	2.647
							411.5	412.5	1	0.87	2.118
							443.5	444.5	1	0.87	0.270
BD043	696,325.178	4,546,790.676	695.41	474.50	280	-65	282.4	284.4	2	1.73	2.880
							314.4	317.5	3.1	2.68	0.162
							324.2	330.5	6.3	5.46	1.374
						incl.	324.2	325.45	1.25	1.08	6.549
							352.3	353.3	1	0.87	0.090
							365.2	366.2	1	0.87	0.252
							377.3	379.3	2	1.73	0.716
							388.3	393.5	5.2	4.50	0.185
							418.95	419.95	1	0.87	0.366
							423.9	424.9	1	0.87	1.553
							461.6	462.65	1.05	0.91	0.196
BD044	696,401.278	4,546,833.477	691.67	521.00	280	-55	315.15	321.15	6	5.20	0.280

							323.2	333.15	9.95	8.62	0.327
						incl.	332.05	333.15	1.1	0.95	1.540
							338.25	340.25	2	1.73	0.339
							344.25	346.25	2	1.73	0.055
							347.25	348.25	1	0.87	0.064
							351.5	362.65	11.15	9.66	0.185
							365.65	370.55	4.9	4.24	0.107
							377.5	378.5	1	0.87	2.454
							385.6	386.6	1	0.87	0.195
							394.55	396.55	2	1.73	0.354
							414.45	415.45	1	0.87	0.051
							427.5	428.5	1	0.87	0.220
							441.4	442.4	1	0.87	0.109
							448.4	449.4	1	0.87	0.061
							466.5	467.5	1	0.87	0.652
							470.5	471.5	1	0.87	0.110
BD045	696,427.358	4,547,512.493	712.66	293.90	280	-59	85	86	1	0.87	0.117
							106.3	108.3	2	1.73	0.079
							118.4	119.4	1	0.87	0.088
							125.4	126.4	1	0.87	0.152
							131.4	133.4	2	1.73	0.361
							144.4	145.4	1	0.87	0.122
							155.4	160.4	5	4.33	0.237
							163.5	164.5	1	0.87	0.297
							183.7	184.7	1	0.87	4.788
							208.7	209.9	1.2	1.04	2.373
							213.9	214.9	1	0.87	0.050
BD046	696,415.432	4,547,561.220	715.46	344.00	280	-51	171.4	173.4	2	1.73	0.081
							175.5	176.5	1	0.87	0.071
							245.25	246.25	1	0.87	0.218
							268.2	270.2	2	1.73	0.147
							276.2	278.15	1.95	1.69	0.131
							288.2	289.2	1	0.87	0.093
							298.25	300.35	2.1	1.82	8.765
						incl.	298.25	299.35	1.1	0.95	16.505
							314.35	315.35	1	0.87	0.054
							317.35	318.35	1	0.87	0.105
BD047	696,438.822	4,547,618.468	719.57	245.00	280	-48	76	77	1	0.87	0.306
							89	92	3	2.60	0.146
							108.15	109.15	1	0.87	0.257
							114.1	120	5.9	5.11	0.054
							137.1	140.1	3	2.60	0.208
							147.2	150.2	3	2.60	0.072
							156.75	157.75	1	0.87	0.063
							159.75	160.75	1	0.87	0.085
							212.95	213.95	1	0.87	0.093
							230	232	2	1.73	0.113
							238	239.1	1.1	0.95	0.134
BD048	696,072.872	4,546,392.955	686.96	224.00	280	-50	35.65	36.65	1	0.87	0.219
							85.65	86.65	1	0.87	0.067

B10010	696,023.013	4,546,567.457	680.73	50.00	285	-60	$\begin{aligned} & 19 \\ & 29 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 31 \\ & 46 \end{aligned}$	$\begin{gathered} 3 \\ 2 \\ 12 \end{gathered}$	$\begin{array}{r} \hline 2.60 \\ 1.73 \\ 10.39 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.352 \\ & 0.122 \\ & 0.118 \\ & \hline \end{aligned}$
B10011	696,029.472	4,546,539.291	681.38	70.00	285	-60	0	1	1	0.87	0.140
							12	15	3	2.60	2.984
						incl.	12	13	1	0.87	8.807
							27	28	1	0.87	0.064
							30	31	1	0.87	0.131
							43	45	2	1.73	0.239
							57	70	13	11.26	0.200
B10012	696,005.287	4,546,509.896	683.24	52.00	285	-60	0	10	10	8.66	0.077
							18	19	1	0.87	0.096
							51	52	1	0.87	0.095
BI0013	696,276.715	4,547,276.600	727.64	40.00	295	-60	5	6	1	0.87	0.103
BI0014	696,290.162	4,547,303.407	728.72	40.00	295	-60	4	5	1	0.87	0.071
							8	9	1	0.87	0.208
							23	24	1	0.87	0.189
							35	36	1	0.87	0.062
B10015	696,261.094	4,547,317.090	729.00	40.00	295	-60	1	2	1	0.87	0.079
							8	10	2	1.73	0.144
							22	23	1	0.87	1.014
							31	32	1	0.87	0.095
B10016	696,251.803	4,547,288.345	728.41	46.00	295	-60	13	14	1	0.87	0.073
							17	18	1	0.87	1.859
							39	40	1	0.87	0.194
B10017	696,240.603	4,547,260.567	727.50	43.00	295	-60	9	10	1	0.87	0.267
							13	14	1	0.87	0.072
							30	31	1	0.87	0.156
							38	39	1	0.87	0.329
B10018	696,278.754	4,547,342.019	730.01	40.00	295	-60	2	3	1	0.87	0.077
							10	11	1	0.87	0.171
							16	17	1	0.87	0.170
BI0019	696,298.133	4,547,332.831	728.24	43.00	295	-60	2	3	1	0.87	0.063
							10	11	1	0.87	2.885
							16	17	1	0.87	0.718
							29	30	1	0.87	0.126
							32	33	1	0.87	0.110
							36	37	1	0.87	0.131
B10020	696,265.061	4,547,265.416	725.92	70.00	295	-60	9	10	1	0.87	0.067
							20	21	1	0.87	0.115
							23	24	1	0.87	0.331
							32	35	3	2.60	0.047
							41	42	1	0.87	0.079
							47	48	1	0.87	0.764
							54	59	5	4.33	0.059
							61	64	3	2.60	0.322
B10021	696,275.480	4,547,293.982	727.78	43.00	295	-60	9	10	1	0.87	0.256
B10022	696,265.523	4,547,281.789	727.68	40.00	295	-60	9	13	4	3.46	0.128
							22	23	1	0.87	0.533
B10023	696,326.418	4,547,402.799	723.66	40.00	295	-60	6	9	3	2.60	0.081

							18	19	1	0.87	0.064
							20	21	1	0.87	0.080
							27	28	1	0.87	0.308
B10024	696,309.488	4,547,395.163	727.04	44.00	295	-60	43	44	1	0.87	0.055
BI0025	696,319.538	4,547,390.526	726.20	43.00	295	-60	3	4	1	0.87	0.058
							6	7	1	0.87	0.088
							12	15	3	2.60	0.051
							19	24	5	4.33	0.369
						incl.	23	24	1	0.87	1.414
BI0026	696,317.826	4,547,374.232	726.01	40.00	295	-60	8	9	1	0.87	0.080
							13	14	1	0.87	0.607
							23	24	1	0.87	0.077
							26	27	1	0.87	0.301
B10027	696,306.697	4,547,379.750	728.78	45.00	295	-60	43	45	2	1.73	0.355
B10028	696,282.732	4,547,374.326	730.62	46.00	295	-60	11	12	1	0.87	0.157
							42	46	4	3.46	0.059
BI0029	696,292.746	4,547,371.325	729.81	43.00	295	-60	13	14	1	0.87	0.074
							31	34	3	2.60	0.039
B10030	696,302.691	4,547,368.039	728.97	46.00	295	-60	1	2	1	0.87	0.052
							23	24	1	0.87	0.138
							41	42	1	0.87	0.183
B10031	696,279.141	4,547,357.909	729.67	47.00	295	-60	1	5	4	3.46	0.126
							29	30	1	0.87	1.084
							33	34	1	0.87	0.069
							42	43	1	0.87	0.668
B10032	696,288.728	4,547,353.366	728.35	47.00	295	-60	7	9	2	1.73	0.120
							29	30	1	0.87	0.397
							35	36	1	0.87	0.111
B10033	696,298.312	4,547,348.617	727.96	45.00	295	-60	0	5	5	4.33	0.213
							9	12	3	2.60	0.599
						incl.	9	10	1	0.87	1.711
							26	27	1	0.87	0.072
							35	36	1	0.87	0.052
							37	38	1	0.87	0.070
B10034	696,307.660	4,547,344.317	727.50	43.00	295	-60	28	29	1	0.87	0.184
							34	35	1	0.87	0.203
							40	41	1	0.87	0.251
B10035	696,269.425	4,547,346.539	729.76	28.00	295	-60	3	4	1	0.87	0.088
B10036	696,288.684	4,547,337.159	728.98	46.00	295	-60	2	3	1	0.87	0.051
							14	16	2	1.73	0.843
						incl.	14	15	1	0.87	1.338
							32	33	1	0.87	1.541
							36	37	1	0.87	0.205
B10037	696,243.995	4,547,342.172	729.76	19.00	295	-60	No significant intersections				
B10038	696,253.629	4,547,337.547	729.82	47.00	295	-60	4	5	1	0.87	0.052
							33	34	1	0.87	1.370
							41	43	2	1.73	0.369
							46	47	1	0.87	0.156
B10039	696,263.027	4,547,333.042	729.31	47.00	295	-60	41	42	1	0.87	0.079
							46	47	1	0.87	0.091

B10040	696,280.689	4,547,324.818	727.89	13.00	295	-60	No significant intersections				
BI0041	696,251.989	4,547,321.296	729.50	46.00	295	-60	34	35	1	0.87	0.136
							39	42	3	2.60	0.148
B10042	696,222.907	4,547,334.858	728.67	46.00	295	-60	24	25	1	0.87	0.113
B10043	696,232.505	4,547,330.400	729.11	46.00	295	-60	8	9	1	0.87	0.147
							13	14	1	0.87	0.066
							17	18	1	0.87	0.082
							21	24	3	2.60	0.202
							42	43	1	0.87	0.294
B10044	696,242.362	4,547,325.853	729.47	46.00	295	-60	4	5	1	0.87	0.067
							21	22	1	0.87	0.084
							26	27	1	0.87	0.109
							29	30	1	0.87	0.099
							36	38	2	1.73	0.233
							45	46	1	0.87	0.122
B10045	696,270.058	4,547,312.969	729.14	46.00	295	-60	6	9	3	2.60	0.135
							26	27	1	0.87	0.341
							38	39	1	0.87	0.148
							45	46	1	0.87	0.072
B10046	696,278.857	4,547,308.713	728.75	45.00	295	-60	1	2	1	0.87	0.055
							6	7	1	0.87	0.493
							16	17	1	0.87	0.070
							23	24	1	0.87	0.093
B10047	696,299.800	4,547,300.686	727.85	42.00	295	-60	29	30	1	0.87	0.072
							34	36	2	1.73	0.487
							41	42	1	0.87	0.074
B10048	696,198.784	4,547,329.460	726.95	43.00	295	-60	No significant intersections				
B10049	696,209.754	4,547,324.351	727.80	45.00	295	-60	10	11	1	0.87	0.055
B10050	696,219.757	4,547,319.681	728.74	46.00	295	-60	No significant intersections				
B10051	696,229.697	4,547,315.054	728.83	47.00	295	-60	27	29	2	1.73	0.140
B10052	696,238.653	4,547,310.879	728.93	31.00	295	-60	9	11	2	1.73	0.158
B10053	696,248.784	4,547,306.188	729.15	45.00	295	-60	35	36	1	0.87	0.172
							39	40	1	0.87	0.050
							43	44	1	0.87	0.087
B10054	696,268.396	4,547,298.318	728.09	46.00	295	-60	18	19	1	0.87	0.108
							25	27	2	1.73	0.549
B10055	696,295.917	4,547,284.292	725.41	42.00	295	-60	38	42	4	3.46	0.290
B10056	696,304.995	4,547,282.758	724.95	39.00	295	-60			fica	ons	
B10057	696,193.460	4,547,316.591	726.58	42.00	295	-60	29	30	1	0.87	0.187
B10058	696,204.330	4,547,311.126	727.30	44.00	295	-60	13	14	1	0.87	0.071
BI0059	696,214.022	4,547,306.465	728.06	44.00	295	-60	6	7	1	0.87	0.065
							22	23	1	0.87	0.144
BI0060	696,221.999	4,547,302.718	728.10	47.00	295	-60	1	2	1	0.87	0.071
							21	22	1	0.87	1.102
							24	26	2	1.73	0.075
B10061	696,231.817	4,547,298.011	728.46	46.00	295	-60	35	37	2	1.73	0.227
BI0062	696,242.234	4,547,293.178	728.69	55.00	295	-60	9	10	1	0.87	0.079
							21	23	2	1.73	0.119
							30	31	1	0.87	0.063
							43	44	1	0.87	0.180

							49	50	1	0.87	0.058
B10063	696,286.059	4,547,271.595	725.13	44.00	295	-60	26	27	1	0.87	0.433
BI0064	696,296.534	4,547,266.606	724.31	40.00	295	-60	29	30	1	0.87	0.216
							33	35	2	1.73	0.787
						incl.	33	34	1	0.87	1.396
BI0065	696,304.462	4,547,262.699	723.55	40.00	295	-60	8	10	2	1.73	0.130
							24	25	1	0.87	0.060
B10066	696,184.530	4,547,303.592	726.13	42.00	295	-60	1	2	1	0.87	0.107
B10067	696,194.927	4,547,298.771	726.83	42.00	295	-60	7	8	1	0.87	0.086
B10068	696,204.677	4,547,294.020	727.22	43.00	295	-60	6	7	1	0.87	0.053
							22	23	1	0.87	0.057
							41	42	1	0.87	0.077
BI0069	696,215.014	4,547,289.239	727.71	45.00	295	-60	0	1	1	0.87	0.062
							3	4	1	0.87	0.121
							37	38	1	0.87	0.106
B10070	696,224.282	4,547,284.839	728.12	46.00	295	-60	3	5	2	1.73	1.756
						incl.	3	4	1	0.87	3.394
							19	20	1	0.87	0.129
B10071	696,234.501	4,547,279.687	728.25	55.00	295	-60	19	20	1	0.87	0.110
							23	24	1	0.87	0.317
B10072	696,254.727	4,547,270.518	726.85	55.00	295	-60	7	8	1	0.87	0.056
							29	30	1	0.87	0.058
							39	40	1	0.87	0.139
							44	45	1	0.87	0.129
B10073	696,274.140	4,547,260.997	724.11	42.00	295	-60	27	29	2	1.73	0.066
							41	42	1	0.87	0.061
B10074	696,289.659	4,547,253.738	722.67	38.00	295	-60	15	16	1	0.87	0.459
							23	26	3	2.60	0.120
BI0075	696,298.927	4,547,249.089	721.74	38.00	295	-60	20	21	1	0.87	0.083
							28	29	1	0.87	0.109
							33	34	1	0.87	0.054
BI0076	696,202.140	4,547,278.365	726.87	43.00	295	-60	22	23	1	0.87	0.306
							28	30	2	1.73	0.224
							38	40	2	1.73	0.382
B10077	696,211.582	4,547,273.800	727.20	48.00	295	-60	29	30	1	0.87	0.408
B10078	696,221.887	4,547,269.102	727.55	48.00	295	-60	17	18	1	0.87	0.101
							21	22	1	0.87	0.125
B10079	696,231.387	4,547,265.089	727.51	55.00	295	-60	10	11	1	0.87	9.096
							21	22	1	0.87	0.079
							31	32	1	0.87	0.299
							47	51	4	3.46	0.222
B10080	696,251.487	4,547,260.671	726.09	53.00	295	-60	3	4	1	0.87	0.359
B10081	696,270.627	4,547,251.923	723.58	40.00	295	-60	5	6	1	0.87	0.450
							22	23	1	0.87	0.250
							28	29	1	0.87	0.508
							35	38	3	2.60	0.053
B10082	696,280.159	4,547,247.199	722.82	40.00	295	-60	0	2	2	1.73	0.094
							16	17	1	0.87	0.225
							23	27	4	3.46	0.149
							35	36	1	0.87	0.061

B10083	696,288.483	4,547,243.555	722.22	40.00	295	-60	6	7	1	0.87	0.052
							9	10	1	0.87	0.111
							17	18	1	0.87	0.148
							24	25	1	0.87	0.077
							28	33	5	4.33	0.170
							39	40	1	0.87	0.056
B10084	696,297.311	4,547,239.339	721.53	35.00	295	-60	21	23	2	1.73	0.060
							27	28	1	0.87	0.066
B10085	696,186.767	4,547,286.042	726.40	43.00	295	-60	No significant intersections				
B10086	696,195.340	4,547,281.905	726.49	43.00	295	-60	24	25	1	0.87	0.156
							33	34	1	0.87	0.051
B10087	696,171.350	4,547,277.111	724.56	41.00	295	-60	9	10	1	0.87	0.082
							27	28	1	0.87	0.092
							30	31	1	0.87	0.095
							36	37	1	0.87	0.098
B10088	696,180.681	4,547,272.600	725.05	41.00	295	-60			ican		
B10089	696,189.790	4,547,268.229	725.27	42.00	295	-60	8	9	1	0.87	0.053
B10090	696,198.859	4,547,263.593	725.68	48.00	295	-60	28	29	1	0.87	0.089
B10091	696,208.004	4,547,259.376	725.84	47.00	295	-60	25	27	2	1.73	0.448
B10092	696,168.197	4,547,260.757	723.52	40.00	295	-60	No significant intersections				
B10093	696,178.188	4,547,256.588	724.02	41.00	295	-60	10	12	2	1.73	0.081
							35	36	1	0.87	0.091
B10094	696,187.140	4,547,252.453	724.21	41.00	295	-60	No significant intersections				
B10095	696,162.887	4,547,246.870	722.57	38.00	295	-60	13	15	2	1.73	0.078
							28	29	1	0.87	0.053
							35	36	1	0.87	0.780
B10096	696,172.124	4,547,242.389	723.05	40.00	295	-60	10	12	2	1.73	0.075
							15	16	1	0.87	0.085
							27	28	1	0.87	0.094
B10097	696,260.970	4,547,256.340	725.34	53.00	295	-60	9	10	1	0.87	0.056
							16	17	1	0.87	0.103
							24	25	1	0.87	0.354
							30	31	1	0.87	0.075
							37	39	2	1.73	0.159
B10098	695,982.808	4,546,576.766	682.59	35.00	285	-60	No significant intersections				
B10099	695,981.043	4,546,564.128	682.71	30.00	285	-60	0	1	1	0.87	0.050
							3	4	1	0.87	0.062
							21	22	1	0.87	0.082
							28	29	1	0.87	0.208
BIO100	695,990.385	4,546,561.803	683.05	36.00	285	-60	1	4	3	2.60	0.061
							11	12	1	0.87	0.050
BI0101	695,999.271	4,546,559.405	683.20	47.00	285	-60	2	3	1	0.87	0.098
							11	13	2	1.73	0.867
							37	38	1	0.87	0.050
BIO102	696,009.256	4,546,555.722	683.10	50.00	285	-60	16	17	1	0.87	0.348
							22	28	6	5.20	1.199
						incl.	26	27	1	0.87	6.695
BI0103	696,019.308	4,546,554.251	682.30	60.00	285	-60	2	6	4	3.46	0.068
							34	44	10	8.66	0.260
						incl.	34	35	1	0.87	1.274

						incl.	43	44	1	0.87	1.173
B10127	696,274.332	4,547,059.728	702.24	50.00	295	-60	31	32	1	0.87	0.136
							40	41	1	0.87	0.444
B10128	696,251.805	4,547,037.142	700.51	48.00	295	-60	21	22	1	0.87	0.266
BI0129	696,260.360	4,547,033.419	700.89	48.00	295	-60	32	33	1	0.87	0.286
BI0130	696,244.654	4,547,006.345	700.42	48.00	295	-60	26	27	1	0.87	0.106
BI0131	696,253.836	4,547,002.212	700.46	48.00	295	-60	No significant intersections				
BI0132	696,228.347	4,546,980.817	700.26	47.00	295	-60	33	34	1	0.87	0.169
							40	41	1	0.87	0.066
							43	44	1	0.87	0.074
							46	47	1	0.87	0.063
BI0133	696,237.412	4,546,976.688	699.94	47.00	295	-60	25	26	1	0.87	0.093
BI0134	696,200.940	4,546,961.368	700.41	47.00	295	-60	18	19	1	0.87	0.482
							23	24	1	0.87	0.089
							45	47	2	1.73	0.182
BI0135	696,210.453	4,546,956.834	700.75	47.00	295	-60	28	29	1	0.87	0.086
BI0136	696,219.421	4,546,952.402	700.62	47.00	295	-60	No significant intersections				
B10137	696,228.219	4,546,947.994	700.00	47.00	295	-60	No significant intersections				
BI0138	696,237.063	4,546,943.580	700.25	47.00	295	-60	No significant intersections				
BI0139	696,193.694	4,546,931.325	700.60	48.00	295	-60	42	47	5	4.33	0.331
BIO140	696,202.702	4,546,927.490	700.49	48.00	295	-60	29	30	1	0.87	0.051
							42	43	1	0.87	0.184
BI0141	696,211.963	4,546,923.115	700.26	48.00	295	-60	No significant intersections				
BI0142	696,221.305	4,546,919.127	700.14	48.00	295	-60	No significant intersections				
BI0143	696,230.462	4,546,915.044	699.89	48.00	295	-60	No significant intersections				
BI0144	696,239.501	4,546,910.952	699.91	48.00	295	-60	No significant intersections				
BIO145	696,183.324	4,546,902.364	700.36	47.00	295	-60	26	27	1	0.87	0.119
							41	42	1	0.87	0.240
BI0146	696,071.272	4,546,586.693	688.64	37.00	295	-60	5	7	2	1.73	0.129
							22	23	1	0.87	0.058
BI0147	696,078.673	4,546,583.054	688.85	37.00	295	-60	11	12	1	0.87	0.060
							14	15	1	0.87	1.733
BI0148	696,087.879	4,546,578.826	688.95	37.00	295	-60	No significant intersections				
BI0149	696,096.989	4,546,574.549	688.66	37.00	295	-60	No significant intersections				
BI0150	696,105.675	4,546,570.425	688.52	37.00	295	-60	No significant intersections				
B10151	696,114.985	4,546,564.278	691.39	37.00	295	-60	32	33	1	0.87	0.086
BI0152	696,082.652	4,546,616.673	693.62	37.00	295	-60	No significant intersections				
B10153	696,091.700	4,546,612.479	693.37	37.00	295	-60	16	17	1	0.87	0.059
BI0154	696,100.596	4,546,608.184	693.59	37.00	295	-60	No significant intersections				
BI0155	696,110.047	4,546,605.705	691.46	37.00	295	-60	No significant intersections				
BI0156	696,118.950	4,546,601.597	691.20	37.00	295	-60	No significant intersections				
B10157	696,128.309	4,546,597.173	691.36	37.00	295	-60	No significant intersections				
BI0158	696,081.329	4,546,648.855	690.07	37.00	295	-60	3	4	1	0.87	0.178
							22	24	2	1.73	0.074
B10159	696,088.628	4,546,645.283	690.18	37.00	295	-60	6	7	1	0.87	0.194
							18	21	3	2.60	0.126
BI0160	696,097.488	4,546,641.227	690.03	37.00	295	-60	No significant intersections				
BI0161	696,106.501	4,546,636.958	690.29	37.00	295	-60	36	37	1	0.87	0.187
BI0162	696,115.724	4,546,632.700	690.66	37.00	295	-60	No significant intersections				
BI0163	696,124.886	4,546,628.391	690.93	37.00	295	-60	No significant intersections				

B10164	696,134.091	4,546,624.045	691.13	37.00	295	-60	No significant intersections				
B10165	696,143.309	4,546,619.836	691.40	37.00	295	-60	No significant intersections				
B10166	696,098.084	4,546,677.689	689.55	37.00	295	-60	8	11	3	2.60	0.126
							34	37	3	2.60	0.758
						incl.	35	36	1	0.87	2.033
B10167	696,105.752	4,546,674.157	689.76	37.00	295	-60	12	15	3	2.60	0.048
							24	25	1	0.87	0.124
							32	33	1	0.87	0.065
B10168	696,114.581	4,546,669.983	689.75	37.00	295	-60	No significant intersections				
B10169	696,123.449	4,546,665.850	690.02	37.00	295	-60	29	31	2	1.73	0.349
B10170	696,132.851	4,546,661.482	690.00	37.00	295	-60	No significant intersections				
B10171	696,110.798	4,546,702.075	689.37	37.00	295	-60	12	13	1	0.87	0.142
B10172	696,118.566	4,546,698.360	689.54	37.00	295	-60	28	29	1	0.87	0.315
							34	35	1	0.87	0.180
B10173	696,127.327	4,546,694.302	689.64	37.00	295	-60	13	14	1	0.87	0.162
							20	21	1	0.87	0.058
							33	35	2	1.73	0.753
						incl.	34	35	1	0.87	1.286
B10174	696,136.770	4,546,689.930	689.81	37.00	295	-60			ica		
B10175	696,145.440	4,546,685.723	689.82	37.00	295	-60	28	29	1	0.87	0.068
B10176	696,132.921	4,546,724.421	689.85	37.00	295	-60			ica	ons	
B10177	696,139.099	4,546,721.455	689.85	37.00	295	-60	22	23	1	0.87	0.069
B10178	696,148.186	4,546,717.281	689.71	37.00	295	-60	6	7	1	0.87	0.067
B10179	696,156.803	4,546,713.354	689.41	37.00	295	-60	22	23	1	0.87	0.144
							29	30	1	0.87	0.100
B10180	696,129.692	4,546,759.737	689.60	37.00	295	-60	19	20	1	0.87	0.101
BI0181	696,137.452	4,546,755.998	689.49	37.00	295	-60	5	6	1	0.87	0.119
							23	25	2	1.73	0.099
B10182	696,146.177	4,546,751.907	689.72	37.00	295	-60	27	28	1	0.87	0.059
B10183	696,155.280	4,546,747.599	690.15	37.00	295	-60			ica		
B10184	696,164.835	4,546,743.329	690.36	37.00	295	-60			ica		
BI0185	696,173.821	4,546,739.123	689.99	37.00	295	-60			ica	ns	
B10186	696,147.186	4,546,785.334	689.68	37.00	295	-60			ica		
B10187	696,155.090	4,546,781.623	689.78	37.00	295	-60	19	20	1	0.87	0.355
B10188	696,162.711	4,546,778.108	689.99	37.00	295	-60			ica	ons	
B10189	696,170.386	4,546,774.379	689.74	37.00	295	-60	22	23	1	0.87	0.120
B10190	696,178.013	4,546,770.805	689.71	37.00	295	-60			ica		
BIO191	696,185.547	4,546,767.256	689.67	37.00	295	-60			ica		
B10192	696,193.220	4,546,763.709	689.68	37.00	295	-60			ica		
B10193	696,200.746	4,546,760.252	690.06	37.00	295	-60	19	20	1	0.87	0.253
B10194	696,157.918	4,546,814.745	689.86	39.00	295	-60			ica		
B10195	696,167.568	4,546,810.346	689.56	37.00	295	-60			ica		
B10196	696,177.091	4,546,805.906	689.56	37.00	295	-60			ica		
B10197	696,185.869	4,546,801.840	689.52	37.00	295	-60	8	9	1	0.87	0.093
B10198	696,194.291	4,546,797.731	689.29	37.00	295	-60			ica		
B10199	696,203.311	4,546,793.611	689.59	37.00	295	-60			ica	ns	
B10200	696,212.939	4,546,789.140	689.89	37.00	295	-60			ica		
B10201	696,166.622	4,546,841.162	689.97	37.00	295	-60			ica		
B10202	696,175.880	4,546,836.802	689.71	37.00	295	-60			ica		
B10203	696,185.293	4,546,832.446	689.69	37.00	295	-60	5	7	2	1.73	0.687

						incl.	5	6	1		1.107
B10204	696,194.051	4,546,828.194	689.80	33.00	295	-60	23	24	1	0.87	0.056
B10205	696,203.048	4,546,823.877	689.42	37.00	295	-60	No significant intersections				
B10206	696,212.673	4,546,819.463	689.51	37.00	295	-60	22	23	1	0.87	0.081
B10207	696,221.338	4,546,815.318	689.43	37.00	295	-60	23	24	1	0.87	0.088
B10208	696,179.910	4,546,868.691	690.30	37.00	295	-60	24	25	1	0.87	0.080
B10209	696,189.493	4,546,864.049	690.34	37.00	295	-60	No significant intersections				
B10210	696,198.532	4,546,859.647	690.48	37.00	295	-60	32	33	1	0.87	0.151
B10211	696,207.470	4,546,855.526	690.23	37.00	295	-60	28	30	2	1.73	0.145
B10212	696,216.744	4,546,851.071	690.15	37.00	295	-60	No significant intersections				
B10213	696,225.265	4,546,847.011	690.73	37.00	295	-60	No significant intersections				
B10214	696,192.247	4,546,898.234	690.62	37.00	295	-60	10	10	1	0.87	0.361
							25	27	2	1.73	0.147
B10215	696,201.162	4,546,893.942	690.60	37.00	295	-60	28	29	1	0.87	0.118
B10216	696,210.479	4,546,889.733	690.77	37.00	295	-60	9	10	1	0.87	0.250
B10217	696,219.254	4,546,885.671	690.65	37.00	295	-60	No significant intersections				
B10218	696,228.505	4,546,881.286	690.34	37.00	295	-60	17	18	1	0.87	0.061
B10219	696,238.080	4,546,876.899	690.49	37.00	295	-60	11	12	1	0.87	0.067
B10220	696,016.043	4,546,620.171	669.02	22.00	285	-60	0	10	10	8.66	0.075
							15	16	1	0.87	0.163
							19	20	1	0.87	0.063
B10221	696,025.725	4,546,617.561	668.60	22.00	285	-60	2	3	1	0.87	0.113
							15	22	7	6.06	0.078
B10222	696,035.018	4,546,615.047	668.95	22.00	285	-60	9	10	1	0.87	0.082
B10223	696,008.446	4,546,591.160	668.43	22.00	285	-60	0	3	3	2.60	0.306
							12	16	4	3.46	0.223
							21	22	1	0.87	0.053
B10224	696,018.001	4,546,588.549	668.41	22.00	285	-60	2	3	1	0.87	0.090
							8	9	1	0.87	1.027
							11	12	1	0.87	0.056
B10225	696,027.539	4,546,585.973	668.15	22.00	285	-60	6	9	3	2.60	0.326
							12	14	2	1.73	0.074
							16	17	1	0.87	0.113
							20	21	1	0.87	0.084
BI0226	696,023.848	4,546,649.138	669.55	22.00	285	-60	0	3	3	2.60	0.220
							8	12	4	3.46	0.120
B10227	696,033.774	4,546,646.498	669.40	22.00	285	-60	1	3	2	1.73	0.088
							9	19	10	8.66	0.196
						incl.	18	19	1	0.87	1.210
							21	22	1	0.87	0.117
B10228	696,043.168	4,546,643.909	668.85	22.00	285	-60	21	22	1	0.87	0.861
B10229	696,019.978	4,546,634.679	669.39	22.00	285	-60	1	9	8	6.93	0.224
						incl.	8	9	1	0.87	1.027
B10230	696,029.620	4,546,632.051	669.26	22.00	285	-60	3	17	14	12.12	0.239
						incl.	14	15	1	0.87	1.986
							20	22	2	1.73	0.068
B10231	696,050.776	4,546,641.774	668.62	22.00	105	-60	3	12	9	7.79	0.130
							21	22	1	0.87	0.256
B10232	696,021.226	4,546,784.876	691.28	47.00	105	-60	No significant intersections				
B10233	696,011.682	4,546,787.305	691.29	47.00	105	-60	19	20	1	0.87	1.431

B10234	696,002.270	4,546,789.819	691.23	47.00	105	-60	No significant intersections				
B10235	695,992.081	4,546,792.597	691.03	47.00	105	-60	15	17	2	1.73	0.186
B10236	696,027.223	4,546,797.687	691.64	41.00	105	-60	No significant intersections				
B10237	696,017.199	4,546,800.254	691.50	47.00	105	-60	No significant intersections				
B10238	696,007.603	4,546,802.798	690.92	47.00	105	-60	5	6	1	0.87	0.071
B10239	695,997.775	4,546,805.613	690.87	47.00	105	-60	No significant intersections				
B10240	695,988.078	4,546,808.240	690.74	47.00	105	-60	No significant intersections				
B10241	696,089.416	4,547,154.626	710.93	71.00	105	-60	23	26	3	2.60	0.292
							28	30	2	1.73	0.058
							41	42	1	0.87	0.153
							51	52	1	0.87	0.114
							55	59	4	3.46	0.068
B10242	696,079.761	4,547,157.212	711.02	71.00	105	-60	24	26	2	1.73	0.164
							37	38	1	0.87	1.390
B10243	696,070.009	4,547,159.870	710.47	71.00	105	-60	32	33	1	0.87	0.111
							39	40	1	0.87	0.052
							53	54	1	0.87	0.496
							66	67	1	0.87	0.090
B10244	696,060.220	4,547,162.370	710.31	71.00	105	-60	47	48	1	0.87	0.143
							69	71	2	1.73	0.418
B10245	696,087.438	4,547,124.144	710.59	71.00	105	-60	9	10	1	0.87	0.179
							23	24	1	0.87	0.086
							30	31	1	0.87	0.060
							37	38	1	0.87	1.135
							49	50	1	0.87	0.055
B10246	696,077.627	4,547,126.884	709.82	49.00	105	-60	20	23	3	2.60	0.177
							33	34	1	0.87	2.213
							36	37	1	0.87	0.090
							46	47	1	0.87	0.079
B10247	696,067.364	4,547,129.550	709.08	71.00	105	-60	24	25	1	0.87	0.052
							53	56	3	2.60	0.334
							67	68	1	0.87	0.157
B10248	696,058.390	4,547,131.846	708.31	71.00	105	-60	6	7	1	0.87	0.067
							36	37	1	0.87	0.757
							44	45	1	0.87	0.052
B10249	696,085.377	4,547,093.624	709.91	70.00	105	-60	15	16	1	0.87	0.142
							29	30	1	0.87	0.250
B10250	696,075.538	4,547,096.270	708.79	69.00	105	-60	8	9	1	0.87	0.072
							47	48	1	0.87	1.686
							51	54	3	2.60	0.083
B10251	696,065.845	4,547,098.905	707.49	68.00	105	-60	20	21	1	0.87	0.059
							31	32	1	0.87	0.082
B10252	696,056.323	4,547,101.459	706.30	68.00	105	-60	30	31	1	0.87	0.066
							50	51	1	0.87	0.551
B10253	696,081.417	4,547,063.680	709.26	70.00	105	-60	4	5	1	0.87	0.087
							27	35	8	6.93	0.106
							49	50	1	0.87	0.070
B10254	696,071.580	4,547,066.285	708.37	68.00	105	-60	14	15	1	0.87	0.066
							46	47	1	0.87	0.208
B10255	696,062.305	4,547,068.937	707.64	67.00	105	-60	38	39	1	0.87	0.136

							45	48	3	2.60	0.255
B10256	696,052.711	4,547,071.306	707.04	67.00	105	-60	11	12	1	0.87	0.054
							34	37	3	2.60	1.057
							55	56	1	0.87	0.135
							63	65	2	1.73	0.079
B10257	696,077.902	4,547,066.306	708.63	70.00	105	-45	6	7	1	0.87	0.069
							9	10	1	0.87	0.172
							14	16	2	1.73	0.353
							23	28	5	4.33	0.214
							52	53	1	0.87	0.077
							59	61	2	1.73	0.324
							65	66	1	0.87	0.061
							68	70	2	1.73	0.728
B10258	696,085.925	4,547,094.541	709.91	80.00	105	-45	4	6	2	1.73	0.180
							18	21	3	2.60	0.145
							29	36	7	6.06	0.625
						incl.	29	30	1	0.87	3.215
							69	70	1	0.87	0.051
							77	78	1	0.87	0.053
B10259	696,074.123	4,547,034.656	709.76	70.00	105	-60	28	29	1	0.87	0.088
							32	33	1	0.87	0.088
							37	40	3	2.60	0.071
							44	46	2	1.73	0.140
B10260	696,065.780	4,547,036.872	708.92	70.00	105	-60	51	52	1	0.87	0.293
							61	62	1	0.87	0.117
							65	66	1	0.87	0.169
B10261	696,056.340	4,547,039.463	707.46	66.00	105	-60	61	62	1	0.87	0.060
B10262	696,046.655	4,547,041.937	706.56	66.00	105	-60			ica	ons	
B10263	696,095.455	4,547,106.627	710.11	72.00	105	-45	5	8	3	2.60	0.351
							12	13	1	0.87	0.064
							21	22	1	0.87	0.270
							58	60	2	1.73	0.101
							71	72	1	0.87	0.082
B10264	696,083.907	4,547,079.298	709.52	27.00	105	-45	16	17	1	0.87	0.063
							19	24	5	4.33	0.182
B10265	696,058.053	4,546,949.090	689.60	47.00	105	-60			ica		
B10266	696,047.339	4,546,951.608	689.76	47.00	105	-60			ica	ons	
B10267	696,037.060	4,546,951.343	689.95	47.00	105	-60			ica	ons	
B10268	696,058.488	4,546,914.539	689.82	38.00	105	-45	17	18	1	0.87	0.359
B10269	696,057.269	4,546,914.865	689.74	47.00	105	-60			ica	ons	
B10270	696,046.628	4,546,917.737	689.68	47.00	105	-60			ica	ons	
B10271	696,036.933	4,546,920.303	689.84	47.00	105	-60	24	25	1	0.87	0.109
B10272	696,027.345	4,546,922.799	689.78	47.00	105	-60	6	7	1	0.87	0.092
							34	35	1	0.87	0.090
B10273	696,017.594	4,546,925.404	689.89	47.00	105	-60			ica		
B10274	696,051.068	4,546,885.430	690.94	40.00	105	-45	11	12	1	0.87	0.114
							14	15	1	0.87	0.055
B10275	696,050.238	4,546,885.690	690.96	47.00	105	-60	21	23	2	1.73	0.057
							35	36	1	0.87	0.321
B10276	696,040.630	4,546,888.217	691.14	47.00	105	-60	25	27	2	1.73	0.228

B10277	696,031.000	4,546,890.936	690.75	47.00	105	-60	25	26	1	0.87	0.080
B10278	696,050.338	4,546,685.932	655.82	45.00	105	-45	2	3	1	0.87	0.074
							5	9	4	3.46	1.083
						incl.	5	6	1	0.87	3.887
							13	19	6	5.20	0.292
							32	33	1	0.87	0.064
B10279	696,046.252	4,546,686.917	655.87	49.00	105	-60	0	17	17	14.72	0.385
						incl.	13	14	1	0.87	1.223
							22	26	4	3.46	0.061
							35	37	2	1.73	0.316
							40	41	1	0.87	0.246
B10280	696,036.577	4,546,689.567	655.99	43.00	105	-60	2	3	1	0.87	0.075
							6	9	3	2.60	1.425
						incl.	8	9	1	0.87	3.684
							12	13	1	0.87	0.085
							16	18	2	1.73	0.093
							21	22	1	0.87	0.957
							33	36	3	2.60	2.541
						incl.	33	35	2	1.73	3.769
							39	40	1	0.87	0.081
							42	43	1	0.87	0.062
B10281	696,026.966	4,546,692.204	655.91	44.00	105	-60	15	16	1	0.87	0.416
							19	20	1	0.87	0.099
							27	28	1	0.87	0.146
							32	33	1	0.87	0.051
							38	44	6	5.20	0.608
						incl.	41	42	1	0.87	2.550
B10282	696,111.172	4,546,697.655	660.82	37.00	285	-60	0	1	1	0.87	0.093
							21	22	1	0.87	0.142
							25	26	1	0.87	0.233
B10283	696,101.790	4,546,700.198	660.42	37.00	285	-60	3	4	1	0.87	0.228
							6	7	1	0.87	0.092
							36	37	1	0.87	0.140
B10284	696,092.092	4,546,702.785	659.45	48.00	285	-60	17	21	4	3.46	1.062
						incl.	18	20	2	1.73	1.961
							24	25	1	0.87	0.056
							40	41	1	0.87	0.055
B10285	696,082.516	4,546,705.266	658.30	48.00	285	-60	7	8	1	0.87	0.083
							31	32	1	0.87	0.055
							41	42	1	0.87	1.543
B10286	696,073.016	4,546,707.870	657.52	38.00	285	-60	4	6	2	1.73	0.829
						incl.	4	5	1	0.87	1.487
							16	17	1	0.87	0.051
							19	24	5	4.33	0.097
							27	38	11	9.53	0.668
						incl.	31	32	1	0.87	4.595
B10287	696,053.671	4,546,713.091	656.77	33.00	285	-60	1	3	2	1.73	0.069
							6	7	1	0.87	0.132
							12	16	4	3.46	0.364
							20	21	1	0.87	0.161

						incl.	28	33	5	4.33	0.770
							28	30	2	1.73	1.890
B10288	696,063.160	4,546,710.479	656.88	35.00	285	-60	8	11	3	2.60	0.102
							17	30	13	11.26	0.575
						incl. incl.	17	18	1	0.87	1.091
							24	25	1	0.87	4.728
B10289	696,060.748	4,546,668.303	655.14	72.00	285	-60	2	4	2	1.73	0.809
						incl.	2	3	1	0.87	1.548
							8	15	7	6.06	0.502
						incl.	10	11	1	0.87	2.070
							21	39	18	15.59	0.288
						incl.	35	36	1	0.87	1.713
							44	47	3	2.60	0.119
							50	52	2	1.73	0.171
							66	69	3	2.60	1.657
						incl.	66	67	1	0.87	4.429
B10290	696,062.626	4,546,732.456	656.21	33.00	285	-60	3	5	2	1.73	0.294
							11	18	7	6.06	0.822
						incl. incl.	12	13	1	0.87	2.418
							16	17	1	0.87	2.233
							21	22	1	0.87	0.296
							25	28	3	2.60	0.448
BI0291	696,061.604	4,546,732.687	656.26	38.00	285	-45	5	6	1	0.87	0.292
							11	14	3	2.60	0.412
							18	20	2	1.73	0.451
							26	27	1	0.87	0.100
							36	37	1	0.87	0.069
B10292	696,072.228	4,546,729.910	656.26	34.00	285	-60	8	21	13	11.26	0.497
						incl.	17	18	1	0.87	1.558
						incl.	19	20	1	0.87	1.488
							32	33	1	0.87	1.574
BI0293	696,081.609	4,546,727.379	656.72	35.00	285	-60	0	5	5	4.33	1.402
						incl.	2	3	1	0.87	6.516
							10	35	25	21.65	0.462
						incl.	18	19	1	0.87	1.537
						incl.	24	25	1	0.87	7.044
B10294	696,091.035	4,546,724.820	656.93	36.00	285	-60	6	26	20	17.32	0.346
						incl.	6	7	1	0.87	1.082
						incl.	9	10	1	0.87	1.014
						incl.	22	23	1	0.87	2.713
							31	36	5	4.33	0.363
						incl.	35	36	1	0.87	1.423
B10295	696,060.181	4,546,745.592	655.91	35.00	285	-60 incl. incl.	4	5	1	0.87	0.396
							18	21	3	2.60	2.172
							18	19	1	0.87	4.851
							20	21	1	0.87	1.540
							25	28	3	2.60	0.231
							31	33	2	1.73	0.130
BI0296	696,069.858	4,546,742.834	655.68	29.00	285	-60	0	1	1	0.87	0.062
							8	12	4	3.46	0.168

						incl.	17	21	4	3.46	0.369
							17	18	1	0.87	1.087
							28	29	1	0.87	0.051
B10297	696,079.352	4,546,740.279	655.82	29.00	285	-60	16	26	10	8.66	0.095
B10298	696,088.965	4,546,737.817	656.21	29.00	285	-60	0	8	8	6.93	0.096
							13	21	8	6.93	0.115
							26	27	1	0.87	0.164
B10299	696,093.480	4,546,752.046	656.20	43.00	285	-60	3	41	38	32.91	0.411
						incl.	12	13	1	0.87	1.177
						incl.	16	17	1	0.87	2.001
						incl.	21	22	1	0.87	2.853
						incl.	38	39	1	0.87	2.249
B10300	696,102.726	4,546,749.567	655.78	54.00	285	-60	8	9	1	0.87	1.406
							17	23	6	5.20	0.213
							26	54	28	24.25	0.342
						incl.	27	28	1	0.87	1.880
B10301	696,064.185	4,546,760.040	655.63	30.00	285	-45	10	11	1	0.87	0.119
							14	15	1	0.87	0.196
							18	19	1	0.87	0.816
							24	25	1	0.87	0.122
							28	29	1	0.87	0.075
BIO302	696,065.431	4,546,759.825	655.62	38.00	285	-60	10	11	1	0.87	0.064
							15	23	8	6.93	0.536
						incl.	16	17	1	0.87	2.704
B10303	696,073.743	4,546,757.555	655.58	32.00	285	-60	9	12	3	2.60	0.136
							15	16	1	0.87	0.077
							22	27	5	4.33	0.277
BIO304	696,083.482	4,546,755.006	655.64	34.00	285	-60	5	10	5	4.33	0.098
							13	16	3	2.60	0.197
							20	23	3	2.60	0.175
							26	34	8	6.93	0.352
						incl.	30	31	1	0.87	1.321
B10305	696,103.073	4,546,765.239	656.26	55.00	285	-60	9	23	14	12.12	0.171
							27	43	16	13.86	0.456
						incl.	31	32	1	0.87	2.594
						incl.	35	36	1	0.87	1.480
							45	46	1	0.87	0.089
							49	53	4	3.46	0.289
BIO306	696,112.693	4,546,762.493	655.84	67.00	285	-60	2	4	2	1.73	0.087
							6	7	1	0.87	0.295
							12	13	1	0.87	0.087
							16	17	1	0.87	0.066
							20	27	7	6.06	0.338
						incl.	25	26	1	0.87	1.248
							29	30	1	0.87	0.081
							34	48	14	12.12	0.283
							52	67	15	12.99	0.220
						incl.	52	53	1	0.87	1.003
B10307	696,121.808	4,546,760.167	656.18	67.00	285	-60	2	5	3	2.60	0.161
							13	14	1	0.87	0.060

BI0341	696,157.679	4,546,799.059	654.45	88.00	285	-60	38	39	1	0.87	0.092
							47	48	1	0.87	0.058
							53	54	1	0.87	0.097
							57	82	25	21.65	0.237
							86	88	2	1.73	0.304
B10342	696,136.225	4,546,818.295	654.75	88.00	285	-60	11	14	3	2.60	0.639
							11	12	1	0.87	1.090
							20	21	1	0.87	0.075
							25	26	1	0.87	0.051
							29	65	36	31.18	0.524
						incl.	38	39	1	0.87	1.243
						incl.	46	47	1	0.87	1.377
						incl.	52	53	1	0.87	1.358
						incl.	61	62	1	0.87	4.752
							68	82	14	12.12	0.154
							85	87	2	1.73	0.167
BI0343	696,146.036	4,546,815.521	654.75	88.00	285	-60	8	9	1	0.87	0.385
							14	15	1	0.87	0.095
							20	21	1	0.87	0.060
							33	38	5	4.33	0.230
							39	64	25	21.65	0.236
							65	75	10	8.66	0.627
						incl.	66	67	1	0.87	1.430
						incl.	68	69	1	0.87	2.344
						incl.	74	75	1	0.87	1.272
							77	80	3	2.60	0.064
BI0344	696,155.837	4,546,812.948	654.52	88.00	285	-60	39	42	3	2.60	0.072
							46	48	2	1.73	0.277
							50	52	2	1.73	0.069
							55	78	23	19.92	0.251
						incl.	68	69	1	0.87	1.344
							81	88	7	6.06	0.129
BI0345	696,143.628	4,546,832.105	654.19	88.00	285	-60	12	13	1	0.87	0.177
							18	22	4	3.46	0.234
							30	32	2	1.73	0.160
							35	55	20	17.32	0.317
						incl.	38	39	1	0.87	1.860
							61	67	6	5.20	0.352
						incl.	64	65	1	0.87	1.279
							70	71	1	0.87	0.111
							77	78	1	0.87	0.068
							81	83	2	1.73	0.137
BI0346	696,153.202	4,546,829.398	653.85	93.00	285	-60	5	6	1	0.87	0.140
							27	28	1	0.87	0.685
							31	32	1	0.87	0.156
							36	37	1	0.87	1.737
							41	42	1	0.87	0.882
							47	57	10	8.66	0.195
							59	60	1	0.87	0.089
							67	73	6	5.20	0.054

B10347	696,163.068	4,546,826.896	653.80	95.00	285	-60	43	45	2	1.73	0.119
							48	50	2	1.73	0.305
							60	77	17	14.72	0.166
						incl.	75	76	1	0.87	1.057
B10348	696,146.189	4,546,849.756	654.30	82.00	285	-60	11	12	1	0.87	0.093
							15	16	1	0.87	0.175
							24	48	24	20.78	0.221
						incl.	40	41	1	0.87	1.351
							51	74	23	19.92	0.373
						incl.	51	52	1	0.87	1.881
						incl.	57	58	1	0.87	1.116
						incl.	65	66	1	0.87	1.380
							78	79	1	0.87	0.082
B10349	696,091.557	4,546,731.383	655.20	88.00	285	-60	5	6	1	0.87	0.100
							8	21	13	11.26	0.109
							25	50	25	21.65	0.431
						incl.	32	34	2	1.73	2.978
						incl.	41	42	1	0.87	1.308
							54	55	1	0.87	0.114
							60	61	1	0.87	0.061
							66	68	2	1.73	0.249
							77	78	1	0.87	0.083
							81	82	1	0.87	0.070
B10350	696,101.627	4,546,728.631	655.31	88.00	285	-60	9	10	1	0.87	0.078
							12	13	1	0.87	0.267
							24	30	6	5.20	0.462
						incl.	29	30	1	0.87	1.495
							33	60	27	23.38	0.246
							66	68	2	1.73	0.056
							73	75	2	1.73	0.177
							83	84	1	0.87	0.370
B10351	696,110.101	4,546,723.144	655.21	88.00	285	-60	38	39	1	0.87	0.054
							42	43	1	0.87	0.083
							45	74	29	25.11	0.318
						incl.	46	47	1	0.87	1.303
						incl.	51	52	1	0.87	1.787
							77	87	10	8.66	0.106
B10352	696,155.615	4,546,847.196	654.29	86.00	285	-60	21	30	9	7.79	0.118
							33	35	2	1.73	0.060
							37	39	2	1.73	0.309
							43	54	11	9.53	0.204
							59	62	3	2.60	0.230
							69	81	12	10.39	0.225
B10353	696,165.645	4,546,844.481	654.71	92.00	285	-60	78	79	1	0.87	0.097
							81	87	6	5.20	0.389
B10354	696,151.029	4,546,735.809	660.69	36.00	285	-60	12	13	1	0.87	0.304
B10355	696,158.710	4,546,732.133	660.95	36.00	285	-60	No significant intersections				
B10356	696,110.465	4,546,792.617	655.49	77.00	285	-60	0	1	1	0.87	0.053
							5	18	13	11.26	0.167
						incl.	17	18	1	0.87	1.116

							21	61	40	34.64	0.309
							22	23	1	0.87	1.053
						incl.	25	27	2	1.73	1.289
						incl.	37	38	1	0.87	1.071
						incl.	42	43	1	0.87	2.098
							68	72	4	3.46	0.279
							75	77	2	1.73	0.052
B10357	696,107.579	4,546,810.413	654.95	68.00	285	-45	5	7	2	1.73	0.069
							13	22	9	7.79	0.093
							27	29	2	1.73	0.795
						incl.	27	28	1	0.87	1.532
							37	40	3	2.60	0.377
							47	60	13	11.26	0.291
						incl. incl.	53	54	1	0.87	1.458
							56	57	1	0.87	1.241
							65	68	3	2.60	0.952
						incl.	67	68	1	0.87	2.236
BI0358	696,108.703	4,546,810.056	655.11	75.00	285	-60	8	9	1	0.87	0.054
							12	38	26	22.52	0.139
							41	51	10	8.66	0.092
							54	55	1	0.87	0.102
							62	63	1	0.87	0.066
							66	69	3	2.60	0.106
							72	75	3	2.60	0.667
						incl.	72	73	1	0.87	1.659
BI0359	696,083.612	4,546,770.174	656.13	53.00	285	-45	9	14	5	4.33	0.192
							26	27	1	0.87	0.127
							30	33	3	2.60	0.064
							37	40	3	2.60	0.064
							44	49	5	4.33	0.087
							51	53	2	1.73	0.074
B10360	696,084.546	4,546,769.945	656.11	20.00	285	-60	0	7	7	6.06	0.430
B10361	696,095.158	4,546,782.850	655.48	33.00	285	-45	0	19	19	16.45	0.165
							21	22	1	0.87	0.090
							24	25	1	0.87	0.091
BI0362	696,096.303	4,546,782.499	655.51	59.00	285	-60	0	12	12	10.39	0.146
							17	18	1	0.87	0.389
							22	23	1	0.87	1.265
							27	32	5	4.33	0.248
							34	35	1	0.87	0.098
							38	39	1	0.87	0.639
							51	54	3	2.60	0.051
							58	59	1	0.87	0.179
BI0363	696,101.113	4,546,796.143	655.45	81.00	285	-45	11	14	3	2.60	0.137
							23	29	6	5.20	1.077
						incl.	23	24	1	0.87	1.319
						incl.	25	26	1	0.87	4.720
							34	36	2	1.73	1.011
						incl.	35	36	1	0.87	1.911
							45	56	11	9.53	0.310

B10373	696,064.075	4,546,654.071	647.37	57.00	285	-60	4	5	1	0.87	1.448
							7	8	1	0.87	0.068
							18	20	2	1.73	3.272
							27	28	1	0.87	0.183
							31	38	7	6.06	0.397
						incl.	32	33	1	0.87	1.087
							39	57	18	15.59	1.366
						incl.	39	42	3	2.60	7.164
B10374	696,073.843	4,546,651.326	647.98	57.00	285	-60	0	1	1	0.87	0.067
							3	5	2	1.73	0.287
							10	11	1	0.87	1.900
							26	29	3	2.60	0.171
							35	39	4	3.46	0.170
							45	57	12	10.39	0.454
						incl.	52	53	1	0.87	1.887
B10375	696,101.679	4,547,388.500	723.54	90.00	105	-45	1	6	5	3.54	0.061
							8	9	1	0.71	0.054
							53	54	1	0.71	1.460
							88	89	1	0.71	0.066
B10376	696,071.987	4,547,349.068	722.36	75.00	105	-45	10	12	2	1.41	0.069
B10377	696,115.110	4,547,443.675	723.90	120.00	105	-45	0	4	4	2.83	0.056
							47	48	1	0.71	0.129
							52	54	2	1.41	0.795
							59	61	2	1.41	0.289
							84	85	1	0.71	1.072
							90	91	1	0.71	0.093
B10378	696,133.158	4,547,477.469	721.40	51.00	105	-45	10	12	2	1.41	0.120
							18	23	5	3.54	0.536
							20	21	1	0.71	2.541
							31	34	3	2.12	0.130
							37	38	1	0.71	0.050

M. Jörg Pohl

Sommerweg 22, 88048 Friedrichshafen, Germany
Mining Consultant, Independent Resource Geologist

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

JORC Technical Report, Mineral Resource Estimation, Barruecopardo Tungsten Deposit
(Insert name or heading of Report to be publicly released) ('Report')

Saloro S.L.U.
(Insert name of company releasing the Report)

Barruecopardo Tungsten Deposit

(Insert name of the deposit to which the Report refers)
If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.
$2^{\text {nd }}$ of November 2023
(Date of Report)

Statement

I,

Jörg Pohl
(Insert full name(s))
am a consultant working for
Independent Mining Consultant
(Insert company name)
and have been engaged by

Agne Ahlenius and Miguel Ángel Menéndez, both full time employees of Saloro S.L.U.
(Insert company name)
to prepare the documentation for
Barruecopardo Tungsten Deposit

(Insert deposit name)

on which the Report is based, for the period ended
$2^{\text {nd }}$ of November 2023
(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating Mineral Resources.

Consent

I consent to the release of the Report and this Consent Statement of:

Jörg Pohl, Mining Consultant, Independent Resource Geologist
(Insert reporting company name)

	$2^{\text {nd }}$ of November 2023
Signature of Competent Person:	Date:
European Federation of Geologists (EFG)	1738
Professional Membership: (insert organisation name)	Membership Number:
	Jesús Montero, Salamanca, Spain
Signature of Witness:	Print Witness Name and Residence: (eg town/suburb)

Additional deposits covered by the Report for which the Competent Person signing this form is accepting responsibility:

No additional deposits are covered in this report.
\qquad
\qquad
\qquad

Additional Reports related to the deposit for which the Competent Person signing this form is accepting responsibility:

No additional reports are covered in this report.
\qquad
\qquad
\qquad
\qquad

Signature of Competent Person:

European Federation of Geologists (EFG)

Professional Membership: (insert organisation name)

Signature of Witness:
$2^{\text {nd }}$ of November 2023
Date:

1738

Membership Number:

Jesús Montero, Salamanca, Spain

Print Witness Name and Residence: (eg town/suburb)

[^0]: Table 6-1 Comparison table of earlier MRE (all values are rounded to reflect confidence levels in the estimate)

[^1]: Figure 11-7 DD Blank Samples

