JORC TECHNICAL REPORT (following 2012 Edition JORC Code guidelines)

Mineral Resource Estimation Barruecopardo Tungsten deposit

Barruecopardo, Castilla y León, Spain

A R R U E CO PARDO prepared by Jörg Pohl (EurGeol. #1728) **Independent Resource Geologist**

prepared for Saloro S.L.U. Barruecopardo, CyL, Spain

9th of November 2023

INDEX

1 EXECUTIVE SUMMARY
2 INTRODUCTION
2.1 Scope of Work
2.2 Sources of information11
2.3 Site Visits
2.3.1 Competent Person11
2.3.2 Company Geologist11
3 RELIANCE OF OTHER EXPERTS
4 PROPERTY DESCRIPTION AND LOCATION
4.1 Project Location
4.2 Mineral Tenement and Land Tenure Status
4.2.1 Reference and Location of Permit
4.2.2 Type and Status of Permit14
4.2.3 Restrictions within Permit14
4.2.4 Security of Permit 14
4.2.5 Any significant Risks14
5 ACCESSIBILITY, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY
6 HISTORY
6.1 Exploration History
6.2 Project History
6.3 Previous Resource Estimations
7 GEOLOGY SETTING AND MINERALISATION
7.1 Regional Geology
7.2 Deposit geology
7.2.1 Geological model
7.3 Geological investigations
8 DEPOSIT TYPE
9 EXPLORATION
10 DRILLING
10.1 Drilling Methods
10.1.1 Diamond drilling
10.1.2 Reverse Circulation drilling
10.2 Drill sample Recovery
JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023 2

10.3	3	Location of Data 2	:6
10.4	L	Logging 2	27
10.5	5	Drill Core logging 2	27
10.6	5	Reverse Circulation logging 2	27
10.7	7	Data Spacing and Distribution2	27
10.8	3 (Orientation of data in relation to Geological Structures	27
11	SA	MPLE PREPARATION AND ANALYSIS 2	28
11.1	1	Sampling Techniques 2	28
11.2	2 9	Subsampling techniques 2	28
11.3	3 (QAQC of subsampling stages	28
11.4	1 9	Sample security	28
11.5	5 (QAQC of assay stages 2	28
1	1.5.	1 Repeat Samples 2	29
1	1.5.	2 Pulp Sample Duplicates 3	0
1	1.5.	3 Blanks	31
1	1.5.4	4 Certified Reference Material – CRM (Standards) 3	32
1	1.5.	5 Umpire Samples 3	3
1	1.5.	6 Quality of Pulverisation process 3	\$4
11.6	5	Historic data 3	\$4
11.7	7	In situ Dry Bulk Density	34
12	Ve	rification of Sampling and Assaying3	\$5
12.1	1	Significant intersections	\$5
12.2	<u>,</u> -	Twin Holes 3	\$5
12.3	3	Data management, Validation and Storage3	\$5
13	ME	TALLURGICAL TESTING AND MINERAL PROCESSING	6
13.1	_	Metallurgical test work3	6
13.2	2	Mineral processing 3	6
14	ES	TIMATION AND REPORTING OF MINERAL RESOURCES	57
14.1	LI	Data Integrity3	57
14.2	2	Database	8
14.3	3 (Comparison RC vs. DD samples 4	0
14.4	L I	Drill hole and Modelling Extensions 4	2
14.5	5	Estimation and Modelling Techniques4	13
14	4.5.	1 Topography 4	13

3

14.5	5.2 W	/ireframes 4	13
14.5	5.3 C	omposites 4	16
14.5	5.4 B	lock Model	16
14.5	5.5 D	omain Statistics	17
14.5	5.6 K	riging neighbourhood analysis KNA	19
14.5	5.7 Zo	ones of Risk 5	6
14.6	Minera	al Resource Estimation Method5	56
14.6	5.1 D	eleterious Elements5	57
14.6	5.2 To	op Cut5	58
14.6	5.3 D	efinition of ordinary kriging parameters5	;9
14.6	5.4 V	ariography6	50
14.6	5.5 Es	stimation process ϵ	51
14.7	Classifi	ication e	52
14.8	Use of	Geological Criteria6	52
14.9	Tonna	ge factors6	52
14.10	Vali	dation of Resource Estimation6	52
14.1	.0.1	Comparison of input and output grades6	52
14.1	.0.2	Comparison of input and output distributions	53
14.1	.0.3	Swath plots6	54
14.1	.0.4	Visual validation on cross sections	6
14.1	.0.5	Geological	2'2
14.1	.0.6	Reconciliation	2'2
14.1	.0.7	Grade tonnage curves and cut off grade	2'2
14.1	.0.8	Comparison to Previous MRE	'3
14.1	.0.9	Mining Factors	'3
14.1	.0.10	Environmental Factors	'3
14.1	.0.11	Mineral Resource Classification	' 4
14.1	.0.12	Relevant Factors for Classification	' 4
14.1	.0.13	Quality and Quantity of Data	'5
14.1	.0.14	Distribution of Data	'5
14.1	.0.15	Geological and Mineralogical Continuity7	'5
14.1	.0.16	Competent Person Statement	'5
14.1	.0.17	Forward Looking Statement and Disclaimer7	'6
15 A	DJACEN	IT PROPERTIES	7

16	OTHER RELEVANT DATA AND INFORMATION	77
17	CONCLUSION AND RECOMMENDATIONS	78
18	REFERENCES	30

List of Figures

Figure 4-1 Location map Spain and Barruecopardo	. 13
Figure 4-2 Barruecopardo tungsten mine exploitation concession	. 14
Figure 5-1 Average High and Low Temperature Barruecopardo (from C WeatherSpark.com)	. 15
Figure 5-2 Average Monthly Rainfall in Barruecopardo (from C WeatherSpark.com)	. 15
Figure 5-3 Average Wind Direction in Barruecopardo (from C WeatherSpark.com)	. 16
Figure 5-4 Average Wind Speed in Barruecopardo (from C WeatherSpark.com)	. 16
Figure 5-5 View towards the North with the Village of Barruecopardo in the background	. 17
Figure 5-6 View looking West across the Barruecopardo open cut, direction Portugal (July	
2023)	17
Figure 7-1 Regional Geology Spain (IGME) on Google Earth	19
Figure 7-2 Barruecopardo mine on Geological map IGME (left) and geology superimposed on	۱
Google Earth	. 20
Figure 7-3 Extract from MAGNA50 sheet 449 "Vilvestre" with the Barruecopardo deposit are	а
in the centre	21
Figure 7-4 Vein swarm within the open pit. Veins marked in blue are mineralised. Dimension	
from left to right: 3m	22
Figure 7-5 Detailed image of a mineralised vein in the open pit.	23
Figure 8-1 Barruecopardo northern pit wall with subvertical vein swarms and/or fractures	
(lower picture interpreted)	24
Figure 11-1 Example scheelite distribution on half core using UV light	28
Figure 11-2 QAQC quarter core sample duplicates	29
Figure 11-3 QAQC quarter core sample duplicates (grades <0.2% WO ₃)	29
Figure 11-4 RC Field Sample Duplicates	30
Figure 11-5 DD Pulp Sample Duplicates	30
Figure 11-6 RC Pulp Sample Duplicates	31
Figure 11-7 DD Blank Samples	31
Figure 11-8 RC Blank Samples	32
Figure 11-9 Certified Reference Material (CRM) over time	32
Figure 11-10 Certified Reference Material (CRM) Mean Percent Difference	33
Figure 11-11 Umpire Samples	33
Figure 14-1 Frequency of sample intervals falling within the 9 wireframes	39
Figure 14-2 Tungsten grade histogram DDH samples	41
Figure 14-3 Tungsten grade histogram RC samples	41
Figure 14-4 Tungsten grade histogram DDH samples Domain 4	42
Figure 14-5 Tungsten grade histogram RC samples Domain 4)	42
Figure 14-6 Long section SSW-NNE with current topography showing open pit and drill holes	(z
exaggerated by 1.5)	43
Figure 14-7 Modelled mineralised wireframes Domain 1 to 9 (oriented North)	44

Figure 14-8 The Barruecopardo open pit mine with drill holes (May 2023) and mineralised	
domains (November 2023)	. 45
Figure 14-9 Mineralised interval	. 46
Figure 14-10 Sample composite grade distribution (all domains)	. 48
Figure 14-11 5m composite sample grade distribution (selected domains)	. 49
Figure 14-12 KNA: Search Distance	. 51
Figure 14-13 KNA: Number of min/max samples	. 52
Figure 14-14 KNA: Number of samples per hole	. 53
Figure 14-15 KNA: Maximum vertical search distance	. 54
Figure 14-17 KNA: discretisation points	. 55
Figure 14-18 Histogram plot Phosphorous - two populations	. 57
Figure 14-19 Barruecopardo open pit mine - wireframes	. 59
Figure 14-20 Variogram all three directions	. 61
Figure 14-21 Composite grades vs. Block grades	. 64
Figure 14-22 Swath plot Northing	. 65
Figure 14-23 Swath plot Easting	
Figure 14-24 Swath plot Elevation	. 66
Figure 14-25 Barruecopardo open pit tungsten deposit Plan View	. 68
Figure 14-26 Section A (incl. drill hole BD040)	. 69
Figure 14-27 Section B (incl. drill hole BD042)	. 69
Figure 14-28 Section C (incl. drill hole BD052)	. 70
Figure 14-29 Section D (incl. drill hole BD045)	. 70
Figure 14-30 Section E (incl. drill hole BAR29)	. 71
Figure 14-31 Grade tonnage curve for Measured, Indicated and Inferred resources	. 72
Figure 14-32 Measured-Indicated-Inferred areas (left: plan view, right: rotated towards north	1)
	. 75

List of Tables

Table 1-1. Barruecopardo Mineral Resource Estimate as of 9 th of November 2023 (The MRE is	
reported using a 0.05% WO ₃ cut-off grade. All values are rounded to reflect confidence levels	
in the estimate.)	C
Table 4-1 Vertices of the Barruecopardo tungsten mine exploitation concession	3
Table 6-1 Comparison table of earlier MRE (all values are rounded to reflect confidence levels	
in the estimate)18	3
Table 14-1 Barruecopardo Mineral Resource Estimate as of 9 th November 2023 (The MRE is	
reported using a 0.05% WO ₃ cut-off grade. All values are rounded to reflect confidence levels	
in the estimate.)	7
Table 14-2 Drillhole statistics (*av. depth calculated only for DD holes and excluding 2021-22	
short holes)	
Table 14-3 Tungsten grade comparison 1m and 5m composites 39	
Table 14-4 Basic statistics DDH and RC initial 1m samples)
Table 14-5 Basic DD 1m sample domain statistics	
Table 14-6 Basic RC 1m sample domain statistics 41	
Table 14-7 Block Model Extensions	
Table 14-8 Block model attributes	7
JORC Technical Report MRE Barruecopardo Tungsten Mine - November 20236	

Table 14-9 Basic sample composite statistics	. 48
Table 14-11 Search ellipse parameters by run and domain OK and ID ²	60
Table 14-12 Variogram parameters	. 60
Table 14-13 Percentages of blocks populated per estimation pass (cog 0.05% WO ₃)	. 61
Table 14-14 Grade reduction during the estimation process (composites or blocks >	
background value 0.002 % WO ₃)	. 63
Table 14-15 Comparison 2023 MRE with 2022 MRE	. 73

1 EXECUTIVE SUMMARY

Saloro S.L.U., who is developing the Barruecopardo Tungsten deposit in an active open pit mining operation since 2019, requested Jörg Pohl, independent mining consultant to re-estimate of the remaining resource as of May 2023. On the 10th of August 2023, EQ Resources announces that EQ Resources acquires Saloro S.L.U. . On the 6th of November EQ Resources announces to having entered into a conditional agreement to acquire 100% of the Barruecopardo Tungsten Mine.

This requested Mineral Resource Estimation (MRE) is documented in the here enclosed technical report.

In 2012, a Mineral Resource Estimate has been prepared and announced, in accordance with the JORC standard, by CSA Global UK (CSA). An in-house non JORC report update to this model and estimate was prepared by Jörg Pohl in 2022.

The current MRE and subject of this technical report has been prepared by Jörg Pohl, independent resource geologist, acting as Competent Person, following the JORC 2012 standard guidelines.

The first JORC report on this deposit, presented by CSA in 2012 was based on the results of 83 diamond holes (DD), drilled between 2006 and 2011 in close distance to the historic pit wall. In 2012 and 2015, 7 more DD holes were added, testing the eastern extension of the deposit. In 2019 a short-hole drill campaign took place with 27 diamond holes in phase 1 area, to investigate structural control, using an acoustic televiewer. In 2021 and 2022, 13 DD hole have been drilled and between 2022 and 2023 another 13 DD holes have been added, to investigate continuity at depth. This sums up to a total number of 143 DD holes. After every drill campaign, the initial block model has been reestimated in the new areas, to create updated estimates, for an internal purpose. In parallel, grade control models have been drilled for this purpose between 2018 and 2020, targeting the areas to be mined immediately.

The holes drilled between 2021 and April 2022, had the objective to investigate several deeper levels of the deposit and to explore previously undrilled areas. This phase of the mine is referred to as "Phase 6". For that MRE (May 2022), as well as all previous resource estimations only the diamond drill holes have been used.

The current MRE, performed in November 2023, uses two significantly different procedures, compared to earlier estimations:

1. DD and RC hole information (assay, survey and geology) is incorporated in the same model and used for the MRE.

2. the strategy for the construction of wireframes has been changed from as many as 20 individual "tight" domains to 9 volumes, in which the estimation process will take place.

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

This MRE focuses on tight soft boundaries, controlled through the estimation parameters, compared to the earlier strategy using narrow hard boundaries with 20 individual domains.

Origin of this change in estimation is the continued discussion on reconciliation, indicating lower grades than predicted by previous models. Objective for the MRE of this technical report is to better define the deposit and achieve closer predictions to the operational grades, as well as to evaluate the remaining in situ minable resource.

From field observations and in discussion with the Saloro Geologists, several basic modelling principles have been defined over the years. Most importantly is the constant general strike direction of approximately 15° NNE for the main part of the mineralised veins. A strike direction of 10° NNE is applied for veinlets at the north-western part of the main structure. For all structures a steep dip of +/-85° towards the ESE (+/-105°) has been observed.

All areas were modelled in the same way, respecting those principles, which resulted in 9 individual and well-defined wireframes acting as hard boundaries. Internal waste was accepted within any of the 9 volumes, resulting in a significant decrease in grade, which is considered to closer represent the current mining operations.

From those wireframes, the mineralised interceptions are extracted into the database. All samples falling within one continuous interception were then composited to 5m intervals for the estimation, smoothing out the initial sample intervals. No top cut was applied. This new approach was requested by the clients chief geologist, to account for the narrow mineralised veins, as they occur in the Barruecopardo Tungsten deposit.

Those composites were analysed geo-statistically by domain. Through variography the three estimation directions and a nugget value were determined for the ordinary kriging estimation process.

As besides Tungsten (WO₃), the three deleterious elements As, P and S are assayed. Those results were analysed, and modelled, using the Inverse Distance Squared technique (ID^2). Results are then written into each block of the block model.

The parent block size adopted for this MRE is 6x6x5m (x-y-z), allowing sub-blocking to a minimum block size of 1.5x1.5x5m respectively. Parent block size has not been changed in respect to earlier MRE's.

A common density value of 2.62 SG has been assigned to the entire rock mass below surface. This is different to the former estimations, were waste rock and some granites were given different densities. Those differences were not clear and therefore not applied any more.

Input and output data were compared after the estimation process and are of acceptable quality, which was confirmed during the validation of the new block model.

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

The classification of the current MRE was assigned according to a certain level of confidence into the data and geological knowledge, which depended on drill hole spacing, interpolation parameters used per pass and several QAQC kriging attributes, calculated during the ordinary kriging process.

The topography used to estimate the model is the latest topography from June 2023, provided by Saloro's internal topographer.

It is concluded that all employed techniques (drilling, sampling, assaying, and estimation) are well documented and of sufficient quality to be used for this resource estimation. The following tonnages and grades result from the given input data:

Category	Tonnage (Mt)	Grade (WO₃ %)	Contained Metal (t of WO₃)
Measured	10.05	0.191	19,204
Indicated	10.46	0.174	18,200
Inferred	3.86	0.259	9,993
Grand Total	24.37	0.195	47,527

Table 1-1. Barruecopardo Mineral Resource Estimate as of 9^{th} of November 2023 (The MRE is reported using a 0.05% WO_3 cut-off grade. All values are rounded to reflect confidence levels in the estimate.)

The resource numbers in Table 1-1 above are referring to the remaining in situ resource as per 9^{th} of November 2023, using the June 2023 topography. For all resource statements in this report, a cut-off grade (cog) of 0.05% WO₃ has been applied.

2 INTRODUCTION

2.1 Scope of Work

After finalising 13 more diamond holes in May 2023, drilled in areas 6 and 7 of the deposit, and the reception of all chemical assays, Saloro S.L.U. requested a mineral resource update to evaluate the remaining resources of the Barruecopardo deposit in June 2023.

This technical report aims to cover all areas of the mining operation, with focus on the Mineral Resource Estimation, such as:

- QAQC and interpretation of all the assay data received from Saloro
- Construction of grade wireframes using the entire DDH and RC dataset
- Extraction of data falling inside the new wireframes
- Statistical analysis (KNA, grade distribution, top cut discussion, variography)
- Ordinary kriging of WO₃ composites into 6x6x5m parent blocks, allowing sub-blocking to 1.5x1.5x5m
- Inverse distance squared (ID²) estimation of the deleterious elements As, P, S
- Model validation
- Resource Classification

2.2 Sources of information

All information used for the MRE has been supplied by Saloro.

The drillhole data has been supplied in form of Excel spreadsheets. For this MRE both diamond drill holes and RC holes and their associated assay data has been used.

Assay data is from Saloro's on site laboratory. Assay method is XRF Fluorescence Spectrography with pressed powder pellets.

Density data has been supplied by Saloro, where one common value of 2.62 g/cm³ has been applied to all rocks below surface.

Topography in DTM format has been supplied by Saloro's topographer and has been generated though drone photography internally. Resolution of the digital terrain model is 3mx3m outside the main pit area and down to approximately 30cm within the open pit.

2.3 Site Visits

2.3.1 Competent Person

Jörg Pohl, acting as CP for Saloro and this MRE conducted site visits throughout 2019 and 2020, with two continuous 14-day periods on site in Barruecopardo in June and July 2019 respectively.

Site visits to the mine have been made regularly over the years, with the latest being on 28th of July 2021, 2nd of November 2022 and the 17th of July 2023.

2.3.2 Company Geologist

The company geologists completed daily site visits during the drill campaigns. Saloro's main office is nearby the Barruecopardo deposit, within the mining concession. All DD and RC material was brought to the office and the core shed complex for further treatment.

3 RELIANCE OF OTHER EXPERTS

The MRE was completed by Jörg Pohl (Independent Resource Geologist) acting as competent person for Saloro, with assistance from Carlos Rodriguez (Chief Mine Geologist) and Miguel Ángel Menéndez (Chief Mining Engineer / Mine manager), both full time employees with Saloro SLU.

Further geological interpretations and modelling ideas came from Tony Bainbridge, EQ Resources Chief Geologist, and were well appreciated.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 Project Location

The project is located in the municipality of the city of Barruecopardo, part of the province of Castilla and León in Western Spain, in proximity to the Portuguese border, which is marked by the river Duero in this area.

Figure 4-1 Location map Spain and Barruecopardo

The Barruecopardo mine is located halfway between the city of Salamanca (Spain) and Porto on the Portuguese Atlantic cost, and some 260km WNW of Spain's capital Madrid.

4.2 Mineral Tenement and Land Tenure Status

4.2.1 Reference and Location of Permit

The permit is situated south of the village of Barruecopardo in the south-western part of the Spanish autonomous community Castilla and León. The table below indicates the vertices of the mining concession (C.E. BARRUECOPARDO Nº 6.432-10). Area of the concession spans over 6.052km² (605.2 ha).

Vartica	ETRS89 Zone 29N			
Vertice	Longitud (W)	Latitud (N)		
0	6° 39' 16.3"	41° 03' 56.2"		
1	6° 39' 16.3"	41° 02' 16.2"		
2	6° 39' 56.3"	41° 02' 16.2"		
3	6° 39' 56.3"	41° 02' 36.2"		
4	6° 40' 36.3"	41° 02' 36.2"		
5	6° 40' 36.3"	41° 02' 56.2"		
6	6° 40' 56.3"	41° 02' 56.2"		
7	6° 40' 56.3"	41° 03' 56.2"		
0	6° 39' 16.3"	41° 03' 56.2"		

Table 4-1 Vertices of the Barruecopardo tungsten mine exploitation concession

Figure 4-2 Barruecopardo tungsten mine exploitation concession

4.2.2 Type and Status of Permit

The concession of the Barruecopardo Tungsten mine is an exploitation concession (C.E. BARRUECOPARDO Nº 6.432-10) and has been granted in 2014 for a period of 30 years, until 2044. It is renewable two times for the same period until 2074 and finally 2104.

4.2.3 Restrictions within Permit

No restrictions are specified within the permit.

4.2.4 Security of Permit

The permit is 100% owned by Saloro SLU.

4.2.5 Any significant Risks

No significant risks have been communicated or are known within the permit. JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

5 ACCESSIBILITY, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY

Barruecopardo is accessible from the existing public road network, with power supply from the local grid and water availability from the flooded historic open pit which is recycled in a closed circuit.

The climate consists of six colder months (November through April) with average temperatures around 10 °C and six warmer months (May through October) with average temperatures above approximately 20°C. Highest temperatures of 40°C can be experienced in summer, with lowest temperatures just below 0°C in winter.

Figure 5-1 Average High and Low Temperature Barruecopardo (from C WeatherSpark.com)

The annual rainfall is about 800 mm, mainly occurring during autumn and winter.

Figure 5-2 Average Monthly Rainfall in Barruecopardo (from C WeatherSpark.com)

Predominant wind direction is between WNW to SSW.

Figure 5-3 Average Wind Direction in Barruecopardo (from C WeatherSpark.com)

Figure 5-4 Average Wind Speed in Barruecopardo (from C WeatherSpark.com)

The landscape is characterised by rolling hills with vertical differences of not more than 50m. Agricultural activity is mainly crop and pig or cattle farming.

Figure 5-5 View towards the North with the Village of Barruecopardo in the background.

Figure 5-6 View looking West across the Barruecopardo open cut, direction Portugal (July 2023).

6 HISTORY

6.1 Exploration History

Tungsten has been mined in Spain and the area of Barruecopardo since the early 20^{th} century. The Barruecopardo mine has been active until 1982 with a steady state production of approximately 500kt of WO₃ per year. Since 1984 the mine was inactive, and the open pit got flooded.

6.2 Project History

Since early 2014 Saloro SLU is the 100% owner of the deposit. After 10 years of intense studies, design work, permitting and financing, including 15 months of construction works, Saloro reopened the mine in 2019 after almost 40 years. Since then, Saloro is producing 260.000t of high quality WO₃ concentrate per year from their open pit mining operations.

6.3 Previous Resource Estimations

The Barruecopardo mine has been exploited since the 1940's but then ceased production in 1982. In 2006 the mine was acquired by Saloro, who granted the currently active mining concession.

Saloro's first resource estimate of the Barruecopardo deposit was prepared by CSA Global UK (CSA) in 2012. In 2018 CSA re-estimated the deposit. From that time on, estimation updates have been sourced to the author of this document.

Year	Resource	Tonnes	WO ₃	WO ₃
	Category	(Mt)	(%)	(tonnes of
	(M-I-I)			metal)
2012 (CSA)	(M-I-I)	27.4	0.26	72,000
2021 (JP)	not defined	32.9	0.246	81,000
2022 (JP)	(M-I-I)	45.9	0.205	94,000
2023 (JP)	(M-I-I)	24.4	0.195	47,500

The most relevant figures are shown in the figure below.

Table 6-1 Comparison table of earlier MRE (all values are rounded to reflect confidence levels in the estimate)

7 GEOLOGY SETTING AND MINERALISATION

The deposit area is part of the Central Iberian Zone (CIZ) of the Iberian massif. The basement rocks are formed of two discordant overlaying metasedimentary units and a large volume of granitic variscan rocks that intruded into those metasediments.

The Palaeozoic metasediments are part of the Shist-Grauwacke Complex (CEG) divided into "Complejo de Alamo and the Upper Serie" and secondly a series composed of Quartzites and shists, aged lower Ordovician.

Predominant rocks in the area are massive intrusive granites and a metamorphic sediment sequence. The granite intrusions took place during the variscan age (326-311 Ma) and have been deformed during the variscan orogeny, with later reactivations during the alpine orogeny. The sediments are of Palaeozoic age.

All rocks are heavily deformed, showing 3-4 deformation phases. Mayor orientations trending NNE-SSW (10-40^o) and NW-SE (120-140^o)

7.1 Regional Geology

The area of Barruecopardo is shown on the Vilvestre 1:50.000 map from IGME, the Spanish Geological and Mining Institute, number 449.

Figure 7-1 Regional Geology Spain (IGME) on Google Earth

Predominant are the different granite units from orange to pink colours and the shists of the CEG, the shist greywacke complex in green.

7.2 Deposit geology

On a deposit scale, all mentioned lithologies are present. Most significantly and well visible in the open cut are the veinlets containing the Scheelite and Wolframite mineralisation. These target formations are interpreted to be extensional, dilatational structures.

In several studies and constant geological and structural work by the Saloro geologists, their sub verticality and continuous alignment has been demonstrated with the deepening of the open pit operation.

Four main units are present (see map below):

- 13: Granite "Ala de Mosca", of medium to large grain size
- 14: Zone of occurrence of quartz dikes, and 14a pegmatites
- 18: Granite of Barruecopardo
- 19: Metasediments (pellitic-psamitic) with quarzitic intercalations

Figure 7-2 Barruecopardo mine on Geological map IGME (left) and geology superimposed on Google Earth

In Figure 7-2, the air picture shows the mine area with its main target being the pegmatites, aligned 15°NNE. West of the open cut is another area with abundant pegmatites which might indicate further exploration potential.

7.2.1 Geological model

The Barruecopardo Tungsten mineralisation is hosted within a pegmatitic lens inside a larger granite occurrence called the "Ala de Mosca Granite". Within this complex a frequent occurrence of quartz veins is present. The mineralised vein swarms observed as narrow sheeted vein systems are interpreted as dilateral structures formed during tectonic activities of variscan age. Those spaces have then been filled during the active period and are the host of mineralisation.

7.2.1.1 Structures

Significant tectonic events occurred during the variscan orogeny, which were then reactivated during the alpine orogeny. Two main orientations of structures exist in the area being NW-SE (mainly dextral) with a general dip of 40-60 degrees towards S-SW. Those are well visible in the Grauwacke Shist Complex to the West. Secondly and predominantly visible granite complex proximate to the mine area are NNE-SSW (mainly sinistral), dipping steeply to the SSE. Both orientations may show minor vertical movements.

Figure 7-3 Extract from MAGNA50 sheet 449 "Vilvestre" with the Barruecopardo deposit area in the centre

With the mine site in the centre of Figure 7-3, the orientation of the main structures indicated by IGME (Instituto Geológico y Minero de España) on the 1:50k geological map. Their main orientations are: NNE-SSW and ENE-WSW.

7.2.1.2 Mineralisation

Mineralisation occurs within the pegmatitic veinlets cutting through the granite complex.

Two main Tungsten minerals are present. Predominant is Scheelite (CaWO₄) which is fluorescent under UV light and to a minor extent Wolframite ((Fe, Mn) WO₄). Other abundant minerals are Quartz, muscovite, pyrite, chalcopyrite and arsenopyrite.

During the geological logging, all samples (DD and RC) are checked under UV light, to detect possible Wolfram mineralisation. Attention is paid to all quartz occurrences with origin from veins, if distinguishable.

7.2.1.3 Veins

The mineralised veins are oriented along strike with a main orientation of NNE 10-15^o and usually range between 1mm and 10 cm of thickness.

Figure 7-4 Vein swarm within the open pit. Veins marked in blue are mineralised. Dimension from left to right: 3m

Figure 7-5 Detailed image of a mineralised vein in the open pit.

7.3 Geological investigations

Main geological investigations are through geological mapping and drilling, undertaken by the Saloro geologists.

Some satellite image interpretation from Landsat 7 images took place to identify and characterise the structural setting.

8 DEPOSIT TYPE

The Barruecopardo deposit is interpreted as a sheeted vein system deposit, with its veins being filled after hydraulic fracturing during the orogenic phases.

The predominant orientation of the subvertical mineralised veins is NNE 10-15^o, which corresponds to the main stress orientation during the variscan and later the alpine orogeny.

An important role on the system and deposit type has a certain intensity of greizenization in proximity of the mineralised veins.

Figure 8-1 Barruecopardo northern pit wall with subvertical vein swarms and/or fractures (lower picture interpreted)

9 EXPLORATION

Exploration activity is not discussed in detail this report. Nevertheless, exploration has been taken place in form of surface mapping in the prospective northern and southern extensions of the Barruecopardo deposit.

As a result, one DD hole has been targeted in the south extension of the deposit (BD048) and three more into the area of its northern extension (BD045, BD046 and BD047), to serve both purposes, deposit extension drilling and exploration.

All of them showed mineralised intercepts at various levels.

10 DRILLING

In this report it is referred to all diamond drill holes (DD), and all reverse circulation drill holes (RC) drilled by Saloro since 2006 and until May 2023, being the latest holes drilled so far.

Specific QAQC procedures and protocols are in place and followed by Saloro personal concerning drilling, logging, sampling and data entry, and can be reviewed in several internal documents such as "QAQC Protocol Saloro 2019" or "Core Drilling May 2021". Those are discussed throughout the following chapters.

10.1 Drilling Methods

Two drilling methods are used, Diamond drilling (DD) and Reverse Circulation drilling (RC).

10.1.1 Diamond drilling

Diamond drilling, with wireline core retrieval. Predominant core diameter is HQ (63.5mm nominal core diameter. Occasionally PQ diameter 85mm has been used to drill the top hole.

10.1.2 Reverse Circulation drilling

Reverse Circulation (RC) drilling was employed for grade control precision drilling, using suitably sized compressors in combination with a 140mm diameter face sampling hammer.

10.2 Drill sample Recovery

Saloro DD typically recorded overall core recoveries in excess of 90%, which is considered acceptable.

Saloro RC drill samples are collected over 1m intervals through a cyclone. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Individual sample bags are not weighed to assess sample recovery, but a visual inspection is made by the Company geologist to ensure all samples are of approximately equivalent size. All inspections for recovery are considered as appropriate.

10.3 Location of Data

All planned drillholes are marked using a differential GPS by the Saloro internal surveyor, with millimetric precision. Once drilled, the holes are resurveyed. Those coordinates are entered into the drillhole database. Coordinate projection and datum is ETRS89, UTM29N.

All diamond drill holes are systematically being logged using a downhole deviation probe equipped with a Gyro (Reflex). The hole path is imported into the database and used during the interpretation of the deposit.

Most RC holes are short holes with an average depth of 40-50 and considered to not divert from the planed trajectory. In some cases, RC holes were drilled to deeper depth, with a maximum of 120m within the open pit area.

For this estimation long RC holes have been compared with nearby DD holes and an acceptable fit of mineralised intercepts between both has been observed. Nevertheless, in the future all drill hole deviations (RC and DD) should be logged.

10.4 Logging

10.5 Drill Core logging

Once stored in the core box, the drill core is taken to the core shed on site, where it is photographed (dry and wet) and geologically logged.

Detailed logging procedures are in place with RQD and recoveries being logged first, followed by the identification of Scheelite with the help of a handheld UV lamp and finally geological and structural logging.

For the geology log the following features are recorded: lithology, alterations, mineralization, structures and paying special attention for the presence of quartz veins. For those position, relative angle in respect to the drill core axis, and their thickness is recorded. In addition, observations of sulphides are annotated.

10.6 Reverse Circulation logging

The approximately 40kg sample recovered from the RC rig is collected in large plastic bags, which are then run through a three-stage riffle splitter to obtain a representative 4-5kg split of the original sample.

This split sample is taken to the core shed, where it is further split to achieve a 1kg sample which is used in case the interval is identified as possibly mineralised.

This identification process uses the remaining 4kg from which a small portion is being sieved and analysed geologically, for abundant quartz and using the UV light lamp. All observations are noted in the geological log for this sample.

10.7 Data Spacing and Distribution

DD hole spacing is 35 to 50m. The RC holes are spaced 10m, on 50m lines. The diamond holes added since May 2021have been targeted to fill eventually existing gaps and better inform the deeper sections of the deposit.

10.8 Orientation of data in relation to Geological Structures

All drillholes are oriented and inclined to cut the mineralised structures in a perpendicular way. Main drill orientation is 285°NW, if drilled from the eastern rim of the open pit, and 105°SE for the holes drilled from its western side.

11 SAMPLE PREPARATION AND ANALYSIS

11.1 Sampling Techniques

Designation of sample intervals is visual from drill core following geological aspects and with help of UV light in the core shed, to detect the fluorescent tungsten mineral scheelite.

Sample intervals of 1m are preferred, except in cases where geological reasons support the need for shorter sample intervals.

The selected intervals are cut into half core and sent for analysis to the internal lab, where they are prepared for pressed powder pellet XRF analysis.

RC samples are fixed 1m chip samples split once at the rig, through a three-stage riffle splitter, where a 4-5kg sample is achieved. This sample is taken into the core shed, where it is split again to achieve a 0.8-1kg subsample. The remaining part is analysed under UV light for the presence of scheelite and geologically for abundant quartz, originating from veining. In case of fluorescence or detection of quartz, the corresponding 0.8-1kg sample is selected for analysis.

11.2 Subsampling techniques

Once received in the internal lab, the drill core or selected RC sample is crushed and pulverised to 80% passing 75µm.

11.3 QAQC of subsampling stages

QAQC samples have been added to the sample chain at a frequency of approximately 15%. Those include blanks, standards, and duplicates.

11.4 Sample security

Saloro has developed strict protocols to ensure sample security. These are well documented, and staff is trained and supervise at all stages of the work. Samples are transported from the drill site by company vehicle to a sample preparation shed where samples are prepared to be dispatched to the internal analytical lab.

11.5 QAQC of assay stages

A QAQC protocol has been adapted by Saloro for all assay stages, which includes blanks, standards, sample duplicates and lab pulp duplicates. Results are acceptable for RC samples. DD duplicate analyses are challenging. It is interpreted that the reason for this low correlation between quarter core samples is the high nugget value, see Figure 11-1 below.

Figure 11-1 Example scheelite distribution on half core using UV light

11.5.1 Repeat Samples

Figure 11-2 QAQC quarter core sample duplicates

Figure 11-3 QAQC quarter core sample duplicates (grades <0.2% WO₃)

Correlation of the quarter core sample duplicates is low for the totality of the samples. Due to the small number of samples not all grades are covered to generate better information. Nevertheless, the elevated nugget value is well reflected by those results, and they are thus considered as acceptable.

Figure 11-4 RC Field Sample Duplicates

RC samples show good correlation between the sample and a duplicate sample taken from the same bag.

Future QAQC studies however shall aim to compare the sample with a true field duplicate sample, which shall be taken from the 35kg split rejected in the field.

11.5.2 Pulp Sample Duplicates

A further QAQC step is the comparison of sample pulps, which is usually very good for both DD and RC samples, as can be observed in the two graphs below.

Figure 11-5 DD Pulp Sample Duplicates

Figure 11-6 RC Pulp Sample Duplicates

Figure 11-8 RC Blank Samples

DD and RC blank samples show both acceptable results with 6% and 5% respectively slightly above the detection limit of 0.002% WO₃, as communicated by the lab.

An issue on the RC samples was noted with a small number of values showing 0.003 and 0.004% WO₃. The XRF machine was then recalibrated, and results were acceptable again.

Single spikes as observed for the DD blanks might be explained by the need for better cleaning intervals, which was applied and solved he issue.

11.5.4 Certified Reference Material – CRM (Standards)

Figure 11-9 Certified Reference Material (CRM) over time

Figure 11-10 Certified Reference Material (CRM) Mean Percent Difference

The Saloro lab is currently using two standards, EST1 (0.397% WO₃) and EST2 (0.876% WO₃). Their behaviour is plotted above. On the graph in Figure 11-10, EST 2 shows good correlation, whereas EST1 shows elevated results by 8% for the main part of its use.

This issue must be monitored closely and the XRF machine must be calibrated accordingly for those lower grades. This was performed by sample 50 where the calibration results for EST2 result in a better fit.

11.5.5 Umpire Samples

Figure 11-11 Umpire Samples

Umpire samples are systematically sent for check analysis to ALS Loughrea (Ireland) since the start of the 2018 RC (hole BI0023) for approximately 4% of all samples (RC and DH).

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

Results from Umpire samples indicate a very good fit for grades until 4% WO₃ and acceptable fit for higher grades. Above 4% WO₃, ALS shows slightly higher grades than Saloro. Concerned by this effect are approximately 3% of the Umpire samples and 0.2% of all composite samples.

The results are considered as good and do not indicate issues with analytical grades.

11.5.6 Quality of Pulverisation process

Finally, the lab is also monitoring the percentage of pulverised material with the aim to exceed 80%. Values from 62 DD samples and 243 RC samples oscillate both around 90% which is considered as acceptable.

11.6 Historic data

All data used for this MRE has been generated by Saloro. Earlier Saloro datasets which might not be represented on those graphs have been validated previously to importing into the Saloro drillhole database.

11.7 In situ Dry Bulk Density

After discussions with Saloro geologists a common bulk density for all rocks has been adapted from the 2011 MRE, using the "Archimedes" principle on 934 individual core samples, originating from 22 drill holes well-spaced over the entire deposit. The single value used is 2.62 g/cm³.

12 Verification of Sampling and Assaying

12.1 Significant intersections

No intersections have been publicly announced as Saloro SLU is a privately owned company. Table 1, nevertheless is provided with this report as Appendix A, and is accompanied with a complete table of all used intersections, as well as significant intersections included within longer intervals above 0.05% WO₃ in the Appendix C.

12.2 Twin Holes

Two twin holes have been drilled in the early stage of the development of the deposit, BAR46 with BAR46bis and BAR56 with BAR56bis.

Correlation between both is however challenging, as separation between holes is >7m at their first mineralized intercepts. Most likely this is due to the high nugget effect seen for the entire deposit during the variography and with DD hole duplicates, half and quarter core samples, see Figure 11-1.

12.3 Data management, Validation and Storage

Geological data is recorded on paper copies before it is taken into digital format (Excel spread sheets). For this MRE all available data has been imported into an Access database and validated running several protocols to detect sample overlaps, exceeding collar depth values, invalid hole id's or similar.

Assay data is validated separately before they are imported into the database (chapter 11.5).

All data is stored by Saloro on their internal system.

13 METALLURGICAL TESTING AND MINERAL PROCESSING

Metallurgical test work and mineral processing are not discussed in detail in this report.

Nevertheless, metallurgical test work has been undertaken during the FS stage and afterwards and will be outlined here in short.

13.1 Metallurgical test work

Currently ongoing test work is contracted to Wardell Armstrong International (UK) and focussed on improving recoveries.

13.2 Mineral processing

Current mineral processing is as followed: once mined, the material classified by grade (high, medium, low) is stored in stockpiles on the ROM pad. As a first step the material is run through a series of crushers for grain size reduction to <5mm, before it is taken through an ore sorter (installed early 2023) which separates the non-scheelite containing material.

The selected material goes to the plant for reclassification and is preconcentrated under wet conditions into groups <5mm and <1mm.

Following is a gravimetric separation. The dense particles are run through cyclones. The fines get into a flotation circuit, the larger particles are introduced into the spiral separator.

At that stage any deleterious elements such as As, P and S are eliminated from the circuit through flotation and magnetic separation.

The result is the final concentrate, which will now be stored in big packs for sale into the market.

14 ESTIMATION AND REPORTING OF MINERAL RESOURCES

The MRE for the Barruecopardo deposit has been reported based on the guidelines defined in the JORC code (2012 edition). The MRE has been classified as a Measured, Indicated and Inferred Mineral Resource of 24.4 Mt at an average grade of 0.195 % WO₃.

Category	Tonnes (Mt)	Grade (WO₃ %)	Contained Metal (t of WO₃)
Measured	10.05	0.191	19,204
Indicated	10.46	0.174	18,200
Inferred	3.86	0.259	9,993
Grand Total	24.37	0.195	47,527

Table 14-1 Barruecopardo Mineral Resource Estimate as of 9^{th} November 2023 (The MRE is reported using a 0.05% WO_3 cut-off grade. All values are rounded to reflect confidence levels in the estimate.)

For this resource estimation and with the aim to upgrade the deposit, all RC holes and all DD holes drilled by Saloro since 2006 have been used. Special attention was given to the DD holes drilled since May 2022. These aimed to fill existing gaps or extend known mineralisation in the upper part of the deposit and to better inform the deeper areas of the Barruecopardo prospect.

Mineralised vein swarms have been observed to be very consistent in their orientation (NNE-SSW) and their steep dipping nature of 80-85^o towards the ESE. To raise confidence into those observations from surface, it was important to intercept individual veins, repeatedly at various levels. This objective was achieved with the 2022-23 DD campaign, where most holes were drilled from the western rim of the mine towards deeper depth below the current open pit and intercepting vein swarms that were observed, drilled, and analysed in the upper sections.

The Barruecopardo deposit has been estimated in various occasions. The latest technical report and MRE in accordance with the JORC Code (2004 edition) was undertaken by CSA Global in 2012. The estimation concluded 27Mt at a grade of 0.26% WO₃ (COG 0.05% WO₃) and 72kt contained metal, with slightly smaller extension, less depth of investigation and significant distance between holes in some areas, compared to this 2023 MRE.

14.1 Data Integrity

All geological and chemical data, as well as collar coordinates and drill hole deviations have been validated for this MRE. The entire DD and RC dataset is considered to be of good quality and has been used for this estimation.

All data used for this MRE has been supplied by Saloro. Some new drillhole data originates from the 13 diamond holes drilled since May 2022. The topography used for this estimation is the latest topography from June 2023.

From this initial information 4 individual wireframes have been built in which the estimation was run. In contrast to earlier MRE, interpretation of those wireframes is significantly wider, allowing internal waste between the mineralised vein swarms. Reason for this is the continued issue where internal waste cannot be separated for the SMU of 6x6x5m. Within those wider wireframes the mineralisation is controlled through well-defined parameters of the ordinary kriging process, acting as soft boundaries. The known sharp mineralisation is limited amongst other parameters through tighter search ellipsoids, the number of used samples and drill holes.

All parameters used to control the estimation process will be mentioned later in this chapter.

14.2 Database

All drillhole data has been received in Excel format, was validated before being imported into an Access database and linked to the modelling software (Geovia Surpac).

For the Mineral Resource Estimation (MRE) into a block model, the following data in form of Excel tables have been received: collar, survey, assay, lithology, structures, density, geotech and weathering.

For the construction of the wireframes, composites and the MRE both diamond drill holes and RC drill holes have been used. This is new, where previously exclusively the DD data has been used for resource estimation and likewise only the RC data for the Barruecopardo grade control model. A breakup of those drillholes, samples and the time they were drilled is tabulated below (Table 14-2).

hole type	no. of holes	metres drilled	av. depth	no. of samples	areas drilled	year drilled
DDH	57	11,033.05	194	6,066	all	2006-2007-2008
DDH	33	7,716.80	234	1,353	all	2010-2011-2012- 2015
RC	378	17,456.00	46	11,662	1-2-3-4-5	2018-2019-2020
DDH	27	451.25	17	468	1	2019-2020
DDH	13	4,013.90	309	1,578	6	2021-2022
DDH	13	4,772.40	367	1,510	6 and 7	2022-2023
Total general	521	45,443.40	276*	23,637		

Table 14-2 Drillhole statistics (*av. depth calculated only for DD holes and excluding 2021-22 short holes)

The first two DD hole campaigns aimed to classify the entire deposit with a first MRE in 2012. In 2018 it was decided to populate the Grade Control model with high quality precision RC drill data.

In 2019 a DD drill campaign with 26 short holes and one deeper hole was planned and executed to acquire more structural knowledge. In parallel a surface trenching study gave more insights on this issue.

The following two DD drill campaigns had the objective to fill in existing gaps which impeded higher resource classifications in those areas so far, as well as investigate resource potential at depth, as many of them targeted levels down to 300m RL.

As for RC, most DD sample intervals falling within the previously interpreted wireframes are 1m of length (Figure 14-1). This will therefore be used as compositing interval for a first estimation and analysed geostatistically. The final MRE and object of this report is done using 5m composite samples. Reason for that is the technical imitation to exploit very small veins, which must include barren areas. In the past those areas of inevitable "geological dilution" reduced the final grades in the plant by 30%. Aim with this MRE and 5m composite samples is to better adjust operational resource grades to the final product, taking into account a significant drop in grade for the estimated resource update.

Figure 14-1 Frequency of sample intervals falling within the 9 wireframes

Considering geostatistical issues, 5m composite samples are less representative for geostatistical analysis than the original 1m samples. For that reason, both 1m and 5m composite samples have been analysed in terms of tungsten grades.

The following tables show the different tungsten grades (max and mean) per domain for 1m and 5m composite samples. Grades are weighted grades. No significant reduction is expected nor seen. However, worthwhile to be mentioned, the maximum grades per domain were reduced significantly for the 5m samples (right), which is important during the estimation process.

Domain	1m comps	max %WO₃	mean %WO₃		Domain	5m comps	max %WO₃	mean %WO₃	
1	217	1.218	0.039		1	36	0.256	0.035	
2	1,150	6.207	0.054		2	208	1.843	0.054	
3	303	3.531	0.073		3	52	0.717	0.078	
4	6,246	11.829	0.156		4	1,202	4.533	0.153	
5	2,740	10.000	0.108		5	510	3.571	0.102	
6	240	6.356	0.082		6	42	0.232	0.035	
7	123	3.506	0.125		7	19	0.734	0.141	
8	976	16.505	0.115		8	183	3.684	0.117	
9	202	5.208	0.173		9	34	1.534	0.183	
Total general	12,197	16.505	0.126		Total general	2,286	4.533	0.125	

 Table 14-3 Tungsten grade comparison 1m and 5m composites
 Image: Comparison 1m and 5m composites

Highest grade in Domain 4 for the 1m samples was $11.8 \% WO_3$, where the 5m composite grade for that interval is $4.5 \% WO_3$. This effect is even more pronounced in Domain 8 (see also 14.5.7 Zones of Risk), where a reduction from 16.5 to $3.7 \% WO_3$ occurs. This reduction is desired, it is meant to replace any further top cutting.

14.3 Comparison RC vs. DD samples

For this MRE all available samples RC and DD samples have been used. This is different to earlier estimations, where for the resource model only DD holes were used and for the grade control model only the RC sample data was used. To validate this step, both datasets have been analysed before compositing to 5m composites.

All samples	DDH&RC	only DDH	only RC
mean	0.126	0.152	0.099
error	0.005	0.008	0.005
standard deviation	0.53	0.64	0.38
sample variance	0.28	0.41	0.14
curtosis	214	162	278
coeff. of asymmetry	12.07	10.64	13.43
min	0.000	0.000	0.000
max	16.505	16.505	10.574
no. of samples	12197	6287	5910
confidence level (95%)	0.009	0.016	0.010

Table 14-4 Basic statistics DDH and RC initial 1m samples

DDH samples	DDH_D1	DDH_D2	DDH_D3	DDH_D4	DDH_D5	DDH_D6	DDH_D7	DDH_D8	DDH_D9
mean	0.049	0.083	0.098	0.175	0.149	0.093	0.133	0.173	0.193
error	0.014	0.016	0.026	0.012	0.018	0.034	0.042	0.043	0.055
standard deviation	0.17	0.40	0.35	0.64	0.66	0.50	0.45	0.96	0.74
sample variance	0.03	0.16	0.12	0.40	0.43	0.25	0.20	0.93	0.54
curtosis	32	158	58	114	106	121	35	184	32
coeff. of asymmetry	5.47	11.46	6.97	9.07	9.28	10.28	5.57	12.38	5.47
min	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
max	1.218	6.207	3.531	11.829	10.000	6.356	3.506	16.505	5.208
no. of samples	144	624	187	2938	1380	211	115	508	180
confidence level (95%)	0.028	0.031	0.051	0.023	0.035	0.068	0.083	0.084	0.108

Table 14-5 Basic DD 1m sample domain statistics

RC samples	RC_D1	RC_D2	RC_D3	RC_D4	RC_D5	RC_D6	RC_D7	RC_D8	RC_D9
mean	0.019	0.019	0.034	0.138	0.066	0.005	0.002	0.053	0.010
error	0.007	0.004	0.011	0.008	0.006	0.001	0.000	0.009	0.003
standard deviation	0.06	0.08	0.12	0.47	0.23	0.01	0.00	0.19	0.01
sample variance	0.00	0.01	0.01	0.22	0.06	0.00	0.00	0.04	0.00
curtosis	29	78	72	197	137	7	7	51	3
coeff. of asymmetry	5.18	8.36	7.94	11.58	10.05	2.72	-2.63	6.55	1.99
min	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.000
max	0.395	0.909	1.189	10.574	4.036	0.028	0.002	1.931	0.052

Table 14-6 Basic RC 1m sample domain statistics

To be noted on the RC statistics, the purpous of RC drilling was for grade control, it only took place in certain areas and in the upper 50m of the deposit. This is the reason why some domains only show little sample density and/or very low mean grades (domains 6,7,9).

Figure 14-2 Tungsten grade histogram DDH samples

Figure 14-3 Tungsten grade histogram RC samples

Figure 14-4 Tungsten grade histogram DDH samples Domain 4

Figure 14-5 Tungsten grade histogram RC samples Domain 4)

Analysing the data individually and any of the 9 modelled volumes (domain 1-9), it was observed that both datasets correlate very well with each other and are therefore considered valid to be used as a whole, to estimate the Barruecopardo resource model.

This can also lead to the assumption that the RC data, which, for the nature of its extension, only covers the upper part of the deposit compares well to the lower part of the deposit, which is populated exclusively by DD hole data.

14.4 Drill hole and Modelling Extensions

As a reference for drill holes and modelling, the latest topography is used, dating June 2023. The thirteen holes drilled since May 2022 had maximum depths of up to 474m, extending to a total vertical depth of 300m RL. This enabled to better explore areas that only had little information previously.

Figure 14-6 Long section SSW-NNE with current topography showing open pit and drill holes (z exaggerated by 1.5)

14.5 Estimation and Modelling Techniques

14.5.1 Topography

As a base for topography, the inhouse generated drone-based topography, dated June 2023 was used. Resolution is down to centimetric. Coordinate projection and datum is ETRS89, UTM29N.

14.5.2 Wireframes

Wireframes have been constructed using the chemical data from the diamond drill holes and the RC holes that where initially drilled for grade control. Lower limit for a sample to be included into a wireframe was 0.04% WO₃, allowing internal but no external wate. A total of nine individual and well-defined wireframes have been constructed around the geological information and respecting 5m composite sample intervals.

Apart from domains 4 and 5, which include more massive mineralisation and some internal waste, the other domains are narrow, likewise respecting the 5m composite length and an SMU of 6x6x5m.

Figure 14-7 Modelled mineralised wireframes Domain 1 to 9 (oriented North)

After interpretation of the geological and chemical dataset, nine individual wireframes have been modelled, six of them on the eastern side of the deposit where the tungsten mineralisation

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

is closely controlled along strike at 15° NNE (domains 1, to 6) and three in direction 10° NNE for the western wireframes, (domains 7 to 9).

All veins enclosed in those volumes steeply dip towards the ESE.

Figure 14-8 The Barruecopardo open pit mine with drill holes (May 2023) and mineralised domains (November 2023)

Both strike and dip of those wireframes have been confirmed from pit wall observations as well as during continued field studies with advanced mining operations over the years, such as the trenching study done in 2019 in the northern part of the active pit. Likewise, from the downhole geophysical study, using an acoustic televiewer and from variogram modelling, performed during the different MRE exercises.

Domain wireframes were taken down to depths of 300m RL, including the drillholes that targeted those areas. Nevertheless, the deeper levels are poorly informed and for the moment do rarely exceed Inferred categories for this reason.

With the modified way of building the wirefames during this MRE, the soft boundaries are given more weight than before, where the estimation was mainly restricted through hard boundaries in form of tight wireframes.

All wireframes have been taken another 10m along strike, beyond the last sample to terminate the interpretation.

Figure 14-9 Mineralised interval

Slightly over 90% of the mineralised intercepts (>= 0.05% WO₃) that fall within the wireframed volumes (domains 1-9), are between 1 to 6 meters of length. This is coherent with the width of the search ellipse of the first estimation pass (Figure 14-9Table 14-10) and in line with the SMU.

14.5.3 Composites

Upon client request, the initial sample composite length of 1m was taken to 5m composites for the MRE. Reason for that was mainly the operational aspect, where it is not possible to mine very thin vein swarms as they occur in Barruecopardo, but rather include those into larger intervals. By doing so, even isolated veins have been integrated into a sample length of 5m, allowing for internal waste if weighted composite grades remain above a nominal minimum grade of 0.05% WO₃.

Challenging with this approach is the geostatistical analysis, due to a smoothing effect over such intervals. To overcome this issue, most of the geostatistical work was done on the initial 1m samples and findings where then applied to the final work.

With the smoothing effect through 5m compositing, no further top cutting has been applied to the composited 5m sample population, where the overall grade was almost identical for both populations but individual 5m composite grades were reduced significantly (see Table 14-3)

14.5.4 Block Model

The model is a rotated block model, aligning along with the main orientation of the mineralised vein swarms which is 15^o NNE. The rotation is applied around the y axis to minimise any dilution which might occur through misalignment between mineralisation and blocks.

The extension of the block model is approximately 1800m in NNE-SSW direction and 800m across strike in WNW-ESE direction. Vertical extension is between 755m and 300m RL.

Туре	y (ETRS)	x (ETRS)	z (RL)
Minimum Coordinates	4546414	695564	300
Maximum Coordinates	4548178	696386	755
User Block Size	6	6	5
Min. Block Size	1.5	1.5	5
Rotation	15	0	0

Table 14-7 Block Model Extensions

The final model is populated with the following attributes per block:

Attribute name	Туре	Decimals	Background	Description
as	Float	3	0.005	Arsenic grade (%) from ID ² estimation
class	Integer	-	9	1=measured, 2=indicated, 3=inferred, 9=not classified
density	Float	2	0	Density constant of 2.62 g/cm3
domain	Integer	-	0	Estimation domain / wireframe
р	Float	3	0.004	Phosphorus grade (%) from ID ² estimation
pass	Integer	-	0	Ordinary Kriging Estimation Pass 1,2,3
s	Float	3	0.005	Sulphur grade (%) from ID ² estimation
wo3	Float	3	0.002	Tungsten oxide grade (%) from OK estimation

Table 14-8 Block model attributes

14.5.5 Domain Statistics

Assay data from all 9 domains was extracted individually and analysed statistically. Those values are displayed in the table below. In reference to 14.3 (Comparison RC vs. DD samples), the data has been analysed individually and as a hole for the 1m and 5m composites.

To be mentioned are:

- Average grade per domain and as a hole is significantly lower than in previous MRE, as the process of differentiation of the mineralised vein swarms is meant to be controlled further down the line through tight soft boundaries (search ellipse) within the domains.
- Curtosis is indicating the "peakiness/flatness" of the distribution of the dataset. With all unsampled intercepts set to background value (0.002% WO3), this value has increased.
- Coefficient of asymmetry (skewness) is elevated for the same reason as Curtosis. Over 90% of the data within the domain wireframes are below 0.2% WO₃, the dataset has a strong positive skewness.
- The 5m composites used for the estimation are smoothening out the samples to a point, where no further top cut has been applied (see as well 14.6.2). This new approach was requested by the client's chief geologist. As geostatistically the 1m samples are more representative than the 5m composites, most of the geostatistical analysis was done on the 1m composites. Findings where then applied to the 5m estimation.

Domain 4 has been selected as a base for the estimation and variogram modelling due to its larger sample distribution and for being statistically most representative for the rest of the deposit. The other domains show more irregular distributions or have a smaller number of samples available, which makes the statistical analysis less representative.

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

1 m us. Em comps	1m comp	oosites	5m composites		
1m vs. 5m comps	all domains	domain 4	all domains	domain 4	
mean	0.126	0.156	0.125	0.153	
error	0.005	0.007	0.006	0.009	
standard deviation	0.53	0.56	0.28	0.30	
sample variance	0.28	0.31	0.08	0.09	
curtosis	214	147	59	49	
coeff. of asymmetry	12.07	10.19	6.18	5.49	
min	0.00	0.00	0.00	0.00	
max	16.51	11.83	4.53	4.53	
no. of samples	12197	6246	2286	1202	
confidence level (95%)	0.009	0.014	0.012	0.017	

Table 14-9 Basic sample composite statistics

Figure 14-10 Sample composite grade distribution (all domains)

Figure 14-11 5m composite sample grade distribution (selected domains)

The histogram plots for the individual domains 2, 4, 5, 8 and 9 are very much comparable to each other, all showing a main population, positive skew until grades of approximately 1% WO₃ and a second population between 1 and 3 % WO₃.

Domains 1, 3, 6 and 7 are poorly populated, but also confirm the previously described distribution to a certain point. Figure 14-11 shows two examples of each group.

14.5.6 Kriging neighbourhood analysis KNA

With the objective to best define the estimation parameters, a kriging neighbourhood analysis using the 1m composites for their better geostatistical representation has been performed, testing different estimation parameters. As the deposit has been estimated and analysed multiple times before, some of the previously parameters have been adapted from earlier estimation processes, or due to general agreements, such as parent block size. The quality indicators, kriging efficiency (KE) and the conditional bias slope (CBS) have been used to determine optimum values.

Significant for new estimations with more samples available and different drill spacing is the number of samples to be used to estimate one block. Too many samples for one block will result in excessive smoothing of the block grades, resulting in an artificially homogenous model. Too little samples per block will result in poor kriging efficiencies and non-representative estimates.

The two main parameters that have been tested is the minimum/maximum number of samples and the dimension of the search ellipsoid, which is defined by the range of the model. Further tested were maximum samples per hole, maximum vertical distance, discretisation points and sub block size.

Then, those preferred parameters have been applied to the final estimation using the 5m composite samples.

14.5.6.1 Search distance

For the search distance, Figure 14-12 indicates that below a certain number of samples both quality indicators kriging efficiency and slope regression drop below acceptable values. This critical point is at approximately 30m. A search distance of 50m for the first pass has been chosen, through the search neighbourhood analysing and variography. The second pass, a search distance of 100m has been assigned and 160m for the third pass.

For larger search distances grades will suffer excessive smoothing and grades will not be representative on a local scale.

Figure 14-12 KNA: Search Distance

14.5.6.2 Min-max number of samples

The number of samples to be used for the estimation of one block is critical as it is closely related to the accuracy of the model. Little samples will well define the blocks at short distance to the sample but will extrapolate those grades into areas where they might not be representative anymore. Too many samples will have an excessive smoothing effect and the kriging will not be selective.

In the case of the current dataset a significant decrease of both quality indicators KE and CBS can be remarked, once numbers decrease below 12 samples. Less than 8 samples are unrepresentative, both referring to 1m composites.

Minimum-Maximum Number of Samples Analysis (6x6x5 block size)

Figure 14-13 KNA: Number of min/max samples

A maximum number of 30 (1st pass) and a minimum number of 8 samples (3rd pass) was chosen. Those values applied to the 5m composite samples reflected a maximum of 6 and a minimum of 2 for the respective estimation passes. The maximum number of six 5m composites includes the same number of original samples as the 1m composites.

Figure 14-14 KNA: Number of samples per hole

For the 5m composites a maximum of 2 composites per hole was applied, to allow for more distant drill holes to be included into the estimation of one single block.

14.5.6.4 Maximal vertical distance

The maximal vertical distance parameter allows the rejection of a data point if it is too far away vertically from the block to be estimated, to provide a meaningful estimation.

In conjunction with the downhole variogram, value of 25m has been chosen for the first pass. Second and third pass are restricted to 35m and 45 m respectively.

Maximum allowed vertical distance to the block estimated (6x6x5 block size)

Figure 14-15 KNA: Maximum vertical search distance

Figure 14-16 KNA: discretisation points

Discretisation points are points that are evenly distributed through the block to provide targets for estimation and will then be averaged to provide an estimate for the entire block.

The number of 4 discretisation points per block has been selected.

14.5.6.6 Block Size

Block size has always been predefined from earlier estimation with 6x6x5m (x-y-z), being the SMU size (selective mining unit) allowing maximum sub-blocking down to 0.75x0.75x5m – practically meaning 3 divisions of the original block for x and for y. No sub blocking is allowed in vertical direction (z).

This minimum block size is considered to be too small, as with the compared large drill spacing from the diamond holes, a false impression of selectivity can be transmitted. Nearby blocks may show very similar grades, resulting in a smooth model.

Another negative effect of estimating grades into very small blocks can be that the quality indicators kriging efficiency and conditional bias slope report incorrectly due to an effect of volume variance. The main reason, such small blocks are considered acceptable is that the tight wireframes would not be represented with larger blocks. With the new wireframes used in this estimation this is not necessary anymore, as 5m composites define the minimum with.

For this reason, the smallest allowed sub-blocking size for this estimation has been set to 1.5x1.5x5m, only permitting two divisions from the original 6m blocks. Vertical extension is unchanged during sub-blocking.

14.5.6.7 Resuming KNA

Search distance is closely related to variography, 50m on the major axis allows samples from two drilling lines for the first pass, which is representative on a small scale (drillhole) but takes into account the slightly distant samples as well and gives an equilibrated representative value for each block. Semi-major and minor axis are 42m and 6.3m respectively.

Minimum/maximum 5m composite samples to estimate one block on the first pass have been set between 4 and 6 samples, to assure good equilibrium between a too "nervous" estimation and eventual over smoothing, allowing too many samples.

Maximum number of samples per hole is 6.

A maximum vertical search distance of 25m for the first runs has been determined best.

Discrimination points have been set to 4x4x4 points per block.

14.5.7 Zones of Risk

The resulting block model aims to best present reality but is always a model of a current status of the mine. Therefor certain risks and limitations need to be considered, such as:

- Principal zone of risk are areas populated during the third run. Due to a larger distance to less samples, confidence into those areas is lower. This concerns especially the deeper areas where little information and chemical data is available.
- One of those areas is the deeper northern part of domain 8, where a well mineralised area was estimated on the third pass. Blocks are however supported by the minimum value of all requested parameters.
- Zones of risk are as well areas that have not been integrated by a search ellipsoid, although they form part of a wireframe. In this case they have not been populated. Those areas will remain flagged only with background values, but no "pass" attribute (1st, 2nd 3rd) will be written into the respective block. This may occur although those blocks may fall into a classified area ("class" attribute) and need to be treated carefully, as grades might not be projected to surface. This effect is also mentioned in chapter 14.10.4 below. Solution to this issue is drilling or the enlargement of the 3rd pass ellipsoids. To overcome this effect, the concerned areas have been flagged "9" in the class attribute.

14.6 Mineral Resource Estimation Method

The software package used to perform this resource estimation is Surpac Geovia.

The model has been built to include all DD and RC drill holes in proximity of the Barruecopardo open pit operation and within its mining concession. The model is a rotated block model, to line up with the direction of the mineralised vain swarms, striking at 15° NNE. Parent block size is 6x6x5m (x-y-z), allowing two times sub blocking in x and y direction, for a maximum resolution of 1.5x1.5x5m subblocks.

Tungsten was interpolated using ordinary kriging (OK) in a three-pass estimation process, with an ellipsoid opening after every pass, to include a larger volume within every individual mineralised wireframe. A background value of 0.002% WO₃ has been assigned to all blocks below surface as a "waste rock" value, before the estimation.

The composite grades have been analysed individually by domain. No top cut value has been applied to the composites. This change in methodology is mainly due to the fact that for this estimation, 5m composites have been used, instead of 1m composites previously. As grades are smoothed out during the compositing process from 1m to 5m and including barren areas, no further cut in grade is being applied. This is discussed in more detail in chapter 14.6.2.

To define the final estimation parameters, the composites have been analysed. Results are discussed in (14.6.3).

14.6.1 Deleterious Elements

The three deleterious elements As, P and S have been estimated separately using an Inverse Distance Squared single pass estimation process (ID²). For those elements the initial background values for the model are: As=0.005%, P=0.004%, S=0.005%.

Same as for the tungsten, no top cut has been applied.

For phosphorous, two populations have been observed. A first one showing a peak value at approximately 0.06% and a second peak around a value of 0.15% P. This effect was not further analysed but could be a second population and might give some useful information if investigated, prior to a future resource update.

14.6.2 Top Cut

The aim of top cutting is to "adjust" the composite samples in a way that the result of the resource estimation will be as close as possible to reality. An elevated nugget value with isolated high-grade outliers tend to push grades into poorly informed regions. This may lead to overestimation if not addressed.

Neither too serious top cutting, nor no top cutting in such deposits is desirable. Excessive cutting will result in averaging out all grades which likewise is undesired. Historic reconciliation and the experience made over time is a good indication for top cuts. Therefore, discussions have been held with Saloro personnel concerning reconciliation with the different models in use over time.

An analysis of high grade outliers has been undertaken between RC and DD holes. No big difference between both has been observed.

Due to the nature of the narrow mineralised veins, it was however decided for this estimation to change the compositing process from the usual 1m composites to 5m composite samples, within the predefined hard boundary wireframes. This change allows high grade samples to include low grade samples or even barren material into a continuous 5m interval, as long as the average value does not fall below 0.05% WO₃.

Reason for that is SMU dimension and the general ability to not mine intercepts narrower than 5m – an operational decision, based on geological observations.

Where previously top cuts of 6% or 8 % WO₃ have been applied, a significant reduction in high grades has been observed, when using the 5m composites instead of the original 1m samples. Due to that effect, no additional top cutting has been applied to the 5m composite dataset.

14.6.3 Definition of ordinary kriging parameters

The mineralisation process is considered the result of the same event and showing geostatistical similarities between domains. Nevertheless, all nine domains have been analysed individually.

Figure 14-18 Barruecopardo open pit mine - wireframes

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

The orientation of the search ellipse is defined by the predominant orientation of the mineralised layers which is 15°NNE for domains 1 to 6. Domains 7 to 9 show a slight difference in orientation with a general strike of 10°NNE. This has been respected for the search ellipse orientation during the OK runs and the ID² estimation for the deleterious elements As, P and S.

Both areas dip towards the ESE at 105 and 100^o respectively and are subvertical steeply dipping 80-85^o.

With the information from all this preparatory work, it has been decided to use the following parameters for the ordinary kriging 3-pass estimation:

Barruecopardo ordinary kriging estimation	ID ² estimation		
Parameters (1st/2nd/3rd pass)	Domains 1 to 6	Domains 7 to 9	all domains
Minimum composite samples to estimate one block	4/3/2	4/3/2	2
Maximum composite samples to estimate one block	6/5/4	6/5/4	6
Search ellipse Major Range (m)	50/100/160	50/100/160	160
Search ellipse Semimajor Range (m)	42/83/133	42/83/133	133
Search ellipse Minor Range (m)	6.3/6.3/6.7	6.3/6.3/6.7	6.7
Max composite samples per hole	2	2	2
Max vertical distance to sample	25/35/45	25/35/45	45
Search ellipse bearing Major (degrees)	15	10	15 / 10
Search ellipse plunge (degrees) towards SSW	5	5	5
Search ellipse dip (degrees)	-85	-85	-85
Discretisation points	4/4/4	4/4/4	4

Table 14-10 Search ellipse parameters by run and domain OK and ID²

14.6.4 Variography

To confirm the dimension of the search ellipse, the range of the model, as well as to evaluate the nugget effect, the samples have been analysed through variography in all three directions x, y and z, corresponding to the major, semi-major and the minor axis.

Normal score variograms have been modelled and the results are tabulated below. Due to the high nugget value (47%) of the deposit and relatively low sample density across strike and down dip, the nugget value of the major axis has been used in all directions.

Variogram modelling, indicates findings from field observations such as the main direction of 15 NNE and a plunge of 5-15^o towards 195 SSW. Although variography suggests a higher plunge, field observations and earlier modelling lead to considered that only a minor plunge of approximately 5^o is realistic.

Axe	direction	inclination	plunge	nugget	sill	extension
mayor	15/195	0	5 (SSW)	0.47	0.89	50
semi-mayor	105	-85	-			42
minor	285	5	-			6.3

Table 14-11 Variogram parameters

Although more samples are available, variogram modelling is challenging. Field observations are important to underline the decisions taken.

Due to little samples in the third direction the variograms where challenging for the minor axis, which explains itself with the narrow veins hosting the mineralisation. An extension of 6m is adopted.

14.6.5 Estimation process

The block model estimation takes place within the interpreted 3D wireframes, acting as hard boundaries. Outside those limits all blocks below topography have been assigned a background value of 0.002 % WO₃.

The tungsten attribute (WO₃) has been estimated using a three-pass ordinary kriging process. The results of the first and second pass are considered of higher confidence in terms of available number of samples, distance between drill holes and continuity of the model. The third pass populates the more distant and less informed blocks and has therefor lower confidence. The pass number and drill spacing are important criteria when assigning measured, indicated, or inferred categories. A block without pass number assigned has not been estimated but may fall into an area which has been classified due to nearby samples.

nº. pass	% of blocks populated (>0.05% WO ₃)
1 st pass	20%
2 nd pass	47%
3 rd pass	33%
Total	100%

Table 14-12 Percentages of blocks populated per estimation pass (cog 0.05% WO₃)

A block being populated during the first pass will be blocked for the following passes. In this way, a block that has not been populated during the first pass, for not complying with the required minimum parameters will be available for the next pass.

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

The remaining 3 elements As, P and S were estimated using a single pass with the Invers Distance method (ID²).

14.7 Classification

The choice of the appropriate category of Mineral Resource depends upon the quantity, distribution and quality of data available and the level of confidence that attaches to this data.

The current estimation of the Barruecopardo Tungsten deposit is based upon on criteria defined in the JORC Code (2012 Edition), such as:

- Confidence in the geological model
- Drillhole spacing
- Data and/or sample spacing
- Data Quality (QAQC)
- Geostatistical analysis and geostatistical indicators generated during the MRE
- Experience and lessons learned from, and in comparison with earlier MRE

14.8 Use of Geological Criteria

Geological and structural criteria is considered during the construction of the estimation wireframes. Internal structural data and findings from other studies raised confidence on the orientation of the wireframes.

14.9 Tonnage factors

Tonnage was estimated using the in situ dry bulk density value of 2.62g/cm3 for the entire deposit as described in chapter 11.7.

14.10 Validation of Resource Estimation

The estimation has been validated in four steps:

- Comparison of initial and final grades
- Comparison of composite and block model grade distributions (histograms)
- Looking at trends (swath plots)
- Section by section (visually)

14.10.1 Comparison of input and output grades

Input is the original assay data, composited to fit the wireframes and top cut if necessary, depending on geostatistical analysis, before they are used for the estimation.

A first reduction in grade occurs when a top cut is applied to the original samples, depending on the domain they fall into. In the case of this estimation, the first reduction occurs when the samples are composited to 5m intervals, which creates a grade smoothing on a local scale, as demonstrated in Table 14-3.

A second reduction occurs during the MRE, when a majority of lower grade composites smoothens the less abundant higher grade composites. Data displayed in the table below is from all domains. As those wireframes are built much wider than previously, they include large intercepts above the background grade of 0.002% WO₃.

all domains	no. of samples	av. grade (%WO₃)	reduction (%)
1m composites	8,314	0.1848	-
5m composites	1,944	0.1462	-21%
blocks	320,008	0.1377	-6%

Table 14-13 Grade reduction during the estimation process (composites or blocks > background value 0.002 % WO₃)

Grade reductions as they are shown in Table 14-13Table 14-13 above, are considered as acceptable. The slightly lower average values, compared with the reported resource estimation ($\cos 0.05\% WO_3$) are interpreted as a function of the construction of the open wireframes which include many very low (background) values. The effect of grade reduction during the estimation is -6% compared to the previous estimate from 2022 and was expected in the context of the new way of estimation (wireframes, composites, search ellipse).

14.10.2 Comparison of input and output distributions

A second mean of validating the estimation is comparing input against output values. This is assured through histogram plotting of composite grades versus block grades.

For this MRE, both curves follow each other closely, with the blocks shifted slightly towards lower values. This effect is expected and reflects the sample grade smoothing during the estimation.

The isolated outliers are reflected by the peak on the right of the plot. Those are pushed towards lower grades on the blocks as well, with the highest block grades being 2.35% WO₃. An accumulative value of 99 percentile of the blocks is achieved at a grade of approximately 0.65% WO₃, whereas 99 percentile of the composites are reached at 1.45% WO₃.

Figure 14-20 Composite grades vs. Block grades

For visual reasons the number of blocks has been divided by 300 to adjust scales with the composites in the histogram. Both curves follow each other well, although shifted, until grades of approximately 2.35% WO₃, where no higher block grades are estimated.

14.10.3 Swath plots

Swath plots contrast composite grades with block grades in the three directions Easting, Northing and towards Depth.

The composite curves are nervous for all three directions, although grades have been smoothed during the compositing. Most likely this effect is due to a reduced number of samples compared to the 1m composites.

In respect, following observations can be made:

- Composite grades are above block grades as expected
- Both curves follow each other on all three plots
- Where little samples are available (deposit edges), the curves are more nervous in comparison with areas of good sample density (centre part of the deposit)
- Main smoothing on the N-S plot. This is the direction of best continuity. Even though the nugget effect is high, grades are continuous
- Slight increase in grade towards the north. This might only be a function of lower sample density together with isolated high grade outliers
- Grade peak intensity increases with depth
- The western rim is poorly explored (low sample density), but indicates higher grades. This has to be understood as a zone of risk but as well an underexplored area with good resource potential.

For this MRE, all swath plots show good correlation between input and output values.

For tight wireframes with little internal dilution, Swath plots are expected to show composite grades slightly above the final block grades and where many composite samples are available, both curves overlay each other. This estimation has been run in wider domains such as D4 and D5, controlled by the search ellipse, and allowing for internal non mineralised zones. For the other domains this effect is happening as the wireframes are built tight and do not allow internal waste.

Figure 14-21 Swath plot Northing

The swath plot in north-south direction is constant in the centre part of the deposit, where a reasonable number of composite samples is available. On the edges especially the where little samples are available, the composite curve becomes "nervous", and outliers have larger influence on small sample populations, even though a top cut is applied. The estimation process smoothens this effect.

Figure 14-22 Swath plot Easting

The East-West plots tend to be relatively nervous, which indicates frequent changes of adjacent thin formations. Direction is across strike. This reflects the nature of the deposit with narrow vein swarms and intermediate barren zones. Composites do overly the block values in most cases. The spike in composite values in the very east reflects a small number of isolated high-grade samples. Taking this into account, more holes should be drilled in this aera to confirm or discard mineralisation here.

Figure 14-23 Swath plot Elevation

Composite sample grades are oscillating around grades of 0.15% WO₃, block values are smoothed indicating slightly lower grades. Below an RL of 450m only a small number of samples is available and the curve drops off.

Samples indicate nuggety mineralisation below 400m RL. Some outliers show important peaks on the lower end, this should be investigated through drilling.

14.10.4 Visual validation on cross sections

For the visual validation, the block model is loaded and compared section by section against the assay samples plotted along the collars. Block model grades are plotted in the same colour coding as assays. The blocks are open to allow visibility of the drillholes behind, assays are displayed as disks on the collars. Sections are open 25m to either side.

This method allows to compare the initial values to the final estimation. It is subjective, as more than one sample point and from several holes is used to estimate one block, for this MRE 1m samples have been composited to 5m intervals. This method gives a quick general information on the performance of the estimation.

It also informs in areas where little or only distant samples are available, which is the case in the deep zones where grades were projected from above. Those areas should be followed up through further drilling.

Some of these sections are illustrated below (Figure 14-25 to Figure 14-29).

On these sections the following can be noted:

- Section A: Although wireframes crosscut mineralised drillholes (wireframe east side), the adjacent blocks have not been populated due to little support from along strike drill holes. This reflects the nugget effect, where isolated mineralised samples cannot be followed up in the direction of best continuity. The more massive mineralisation (central wireframe), showing several small intercepts, which after compositing to 5m intervals translate into continuous mineralisation but lower grades as the initial samples.
- Section B: Same effect for the E wireframe, where four drillholes do not show any mineralisation. Regarding the massive central wireframe, using a restricted search ellipsoid, this is a good example where a barren zone is flanked by mineralised intervals, resulting in a minorly mineralised corridor in the centre of the wireframe.
- Section C: Both flanking wireframes (E and W) do not take the estimation all the way to surface due to insufficient information from surrounding drillholes. This is an effect of a desired small search ellipsoid and/or too large drill spacing. Those areas have to be drilled prior to mining.
- Section D: North-Eastern part of the Barruecopardo Tungsten deposit. All mineralised vein swarms are thinning out.
- Section E: North-Western rim of the Barruecopardo Tungsten deposit, where several well mineralised intercepts have been drilled, but due to missing information/samples those cannot be projected all the way to surface. Those areas require more drilling prior to mining.

Figure 14-24 Barruecopardo open pit tungsten deposit Plan View

Figure 14-25 Section A (incl. drill hole BD040)

Figure 14-26 Section B (incl. drill hole BD042)

Figure 14-27 Section C (incl. drill hole BD052)

Figure 14-28 Section D (incl. drill hole BD045)

Figure 14-29 Section E (incl. drill hole BAR29)

14.10.5 Geological

Comparison of assay interval results with geological aspects, structures, veins, and mineral assemblages (quartz, arsenopyrite, pyrite in combination with tungsten mineralisation) indicate good selection criteria and good correlation between each other.

Furthermore, it was studied how composite samples behave along the deposit and if those thin mineralised veinlets may be followed up along strike, especially on the deposit extensions and with emphasis on the northern extension.

For this exercise various composite lengths have been analysed, running from 2 through 5m minimum. The longest mineralised composites (4 and 5m), admitting no internal waste were found difficult to follow through the entire deposit, whereas 3m composites do well define the mineralised veinlets. This is not to be confounded with the new approach to estimate the deposit using 5m composites, allowing internal waste.

In the very north, where 3m composites could not be formed, in most of the cases, single mineralised samples could however serve to "trace" the mineralised sheets.

14.10.6 Reconciliation

From verbal communication with Saloro's Geologists it is understood that all past resource estimates have shown different degrees of overestimation, compared with the numbers from the processing plant. The aim of the current estimation is to reduce this effect.

14.10.7 Grade tonnage curves and cut off grade

Figure 14-30 presents the grade tonnage distribution for the Barruecopardo deposit, based on an increasing cut-off grade. To ensure consistent reporting a nominal cut-off grade of 0.05% WO_3 is used for the MRE.

Figure 14-30 Grade tonnage curve for Measured, Indicated and Inferred resources JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

14.10.8 Comparison to Previous MRE

The latest official MRE dates 2012. The current approach however is very different and it would not make sense to compare the current MRE to that initial estimation. Instead, the table below compares last year's internal MRE (bottom) and the recent MRE, which is object of this report.

Decourse	Tonnos	arada	contained	diffe	rence 202	2->2023	% of
Resource category	Tonnes (mt)	grade WO₃ (%)	metal WO3 (t)	mt	WO₃ (%)	contained metal (t)	% of deposit
2023 MEA	10.1	0.191	19,204	7%	-22%	-16%	40%
2023 IND	10.5	0.174	18,200	-38%	-5%	-41%	38%
2023 INF	3.9	0.259	9,993	-80%	28%	-75%	21%
Grand Total 2023	24.4	0.195	47,527	-47%	-5%	-49%	100%
							-
2022 MEA	9.4	0.244	22,928				24%
2022 IND	16.9	0.184	31,039				33%
2022 INF	19.6	0.203	39,810				42%
Grand Total 2022	45.9	0.205	94,046				100%

Table 14-14 Comparison 2023 MRE with 2022 MRE

Due to different approaches, the 2023 MRE likewise is different to all previously presented MRE. The main difference for such a decrease in tonnage and contained metal is the length of the search ellipse, which was almost cut in half upon client's request. From variography a first pass search was defined with 90m on the mayor axis, whereas a 50m search was applied. This "missing" volume along strike and at depth is reducing tonnage drastically.

14.10.9 Mining Factors

Based on mine processing experience and history, an economic cut-off grade of 0.05% WO₃ is being considered reasonable for the project.

14.10.10 Environmental Factors

The current environmental authorisation is based on the "Declaracion de Impacto Ambimental (DIA), published in the local governmental announcement "Boletín Oficial de Castilla y León" (BOCYL nº 25, dating 6 of February 2014), ORDEN FYM/45/2014.

On 6th of March 2021 Saloro S.L.U. applied for authorisation to modify the current tailings dump. Authorisation has been given on 15th of November 2021.

A newly modification is planned (2023), concerning a volumetric change of the tailings damp. Authorisation has not been given yet, Saloro S.L.U. however considers all necessary authorisations in respect to this project, to be achievable.

The Barruecopardo deposit is situated within the Nature 2000 area and restrictions exist in terms of bird life protection. Saloro S.L.U. is closely working together with the responsible environmental department and respecting their regulations for ongoing operations.

No other environmental limitations are known for the Barruecopardo deposit.

14.10.11 Mineral Resource Classification

The MRE has been classified as Measured, Indicated and Inferred Mineral Resources based on the guidelines outlined in The JORC Code (2012 Edition) and laid out in this document.

14.10.12 Relevant Factors for Classification

Material classified as Inferred Mineral Resources satisfy the following criteria:

- Quantity and grade are estimated on the basis of adequate geological evidence and sampling.
- There is sufficient sampling to be able to imply but not verify geological and grade continuity.
- Indications of sub-vertical block faulting has been observed. Offsets on blocks have been identified but are difficult to quantify, however; they are not expected to exceed 10-15m.
- The quality of the sample data is considered as adequate with 100% of the data being from Saloro's internal lab and in line with internal QAQC procedures and external Umpire analysis.

Material classified as Indicated and Measured Mineral Resources satisfy the additional criteria:

- For **Measured** material an approximate drill spacing not exceeding 35mx35m was required.
- For **Indicated** material an approximate drill spacing not exceeding 50m x 50m was required.
- Most of the remaining material within the interpreted wireframe is estimated during the third pass of the MRE and is classified as an **Inferred** category.
- The grade model on the base of 1m composites contains several estimation QA/QC attributes, which are populated during the OK estimation process which can be analysed. These attributes are kriging variance, kriging efficiency, Lagrange multiplier, conditional bias slope and block variance. They were used as indicators of the confidence of the grade estimate. Findings from the 1m composites were then used to define the model estimated using the 5m composites, as requested by the client.

Coloured results of the classified deposit areas are shown below (Figure 14-31). The left image is a plan view and shows the lateral extension of each category, whereas the right image shows the deposit on an inclined view looking from SE towards NW. On this inclined image it is visible that the deeper areas are predominantly inferred categories due to the lower sample density and drill spacing.

Figure 14-31 Measured-Indicated-Inferred areas (left: plan view, right: rotated towards north)

14.10.13 Quality and Quantity of Data

The quality of the data is considered as good. All chemical data has been generated by the inhouse ALS laboratory including sufficient QAQC samples, which have been validated per drill campaign and as a total during this MRE.

In addition to the internal analysis, umpire samples have been sent to the external ALS laboratory (prep lab Seville, analysis Loughrea, Ireland) and showed good correlation.

The quantity of data is acceptable in the Measured and Indicated classified areas. Mainly the deeper areas will need more drilling to raise categories here but are acceptable to be classified in the Inferred category.

14.10.14 Distribution of Data

Data distribution is relatively homogeneous individually for RC and DD, with closer drill spacing and more drillholes in the upper parts of the deposit, where infill drilling for the measured resource was undertaken.

14.10.15 Geological and Mineralogical Continuity

The continuity of the mapped structures and lithologies support continuity of the tungsten mineralisation on the deposit scale. Infill drilling has demonstrated grade continuity despite elevated nugget values.

14.10.16 Competent Person Statement

The information in this report that relates to Exploration Results and Mineral Resources for the Barruecopardo Tungsten deposit is based on information compiled by Jörg Pohl, who acts as Competent Person and is a Member of the European Federation of Geologists (EFG) and holds

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

the European Geologist title (EurGeol #1728). EFG is a recognised professional organisation by AusIMM and member of CRIRSCO and is included into the current list of recognized professional organisations and member institution.

Jörg Pohl is an independent mining consulting and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and likewise the 2017 Edition of the PERC standard for Reporting of Exploration Results, Mineral Resources and Reserves. Mr Pohl consents Saloro SLU to the inclusion in the report of the matters based on his information in the form and context in which it appears.

14.10.17 Forward Looking Statement and Disclaimer

Statements regarding plans with respect to the Company's mineral properties are forwardlooking statements. There can be no assurance that the Company's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that the Company will be able to confirm the presence of additional mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties.

These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy.

15 ADJACENT PROPERTIES

The subject of this report is the current MRE for Saloro's Barruecopardo prospect. Discussion of adjacent properties is outside of the scope of this report.

16 OTHER RELEVANT DATA AND INFORMATION

All relevant data and information has been provided.

17 CONCLUSION AND RECOMMENDATIONS

Conclusions Resource update

This Mineral Resource Estimation of the Barruecopardo Tungsten Deposit is prepared in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code), 2012 Edition, and aims to replace all earlier MRE.

The entire diamond drill hole and reverse circulation drill hole data has been remodelled and estimated as a whole. Thus, the resource model counts with 143 DD drill holes and 378 RC drill holes for a total of 45,443 metres drilled and 23,637 assay samples analysed.

The new model is a rotated block model with orientation 15^o NNE to align with the strike of the mineralised formation.

Block size is 6x6x5m with a maximum sub blocking size allowed to 1.5x1.5x5m.

Nine individual wireframes have been interpreted from the geological and the geochemical dataset with a predominant strike direction of 15^o (domains 1, 2, 3, 4, , 6) and 10^o (domains 7, 8, 9).

The estimation takes place within those wireframes and below the latest available topography dating June 2023.

Samples above 0.04% WO₃ were used to define the outer boundary of each wireframe. Internal waste is accepted with this MRE, to achieve an estimation closer to what has been observed with reconciliation.

The estimation is controlled by well-defined soft boundaries through the search ellipsoids and other estimation parameters mentioned in this report.

An elevated nugget effect of approximately 50% was observed. This is consistent with former MRE's.

Average global grades have dropped by 5% from 0.205% to 0.195% WO₃. This occurs mainly due to the following reasons:

- Dilution allowed within the wireframes, mainly domains 4 and 5
- Compositing to 5m intervals (no top cut)
- Restricted search ellipsoid (cut in half in respect to previous MRE)
- Definition/restriction of high-grade areas

Global metal content has dropped from 94kt to 47.5kt of metal WO₃. Reasons for this effect are:

- Mined material since last MRE
- Tightened search ellipsoid. Major axis extension reduced by half after client request, compared with the previous estimation dating 2022.
- Wireframes domain 4 and 5 containing more massive metal have been interpreted wider. More volume is included generating more tonnes, incrementing tonnage for blocks below cog (0.05% WO₃)
- Interpretation on 5m composite samples allowing internal waste.

JORC Technical Report MRE Barruecopardo Tungsten Mine - November 2023

Applied QAQC procedures on the block model indicate the model is accurate and reflects the confidence level of the classification.

Modifying factors as described in the JORC Code, such as metallurgical constraints, deleterious elements, mining and processing factors, infrastructure, economic, legal, environmental social or governmental factors have not been considered specifically for this resource update.

Some of those factors like the deleterious elements, infrastructure or ongoing metallurgical test work are treated, but are not analysed in detail.

Recommendations

Bulk density measurements date from 2011. They are considered as adequate but could be refined. An approach could be to define SG for the mineralised veins individually and confirm a global value for the surrounding granites. This should be monitored in the deeper sections of the deposit, where higher densities may be expected due to fresher rock assemblages.

More infill drilling is needed in areas which could not be classified higher than Inferred

Areas of risk are those that have not been populated due to small search or that are poorly informed but that fall in classified areas. Special awareness is needed for those areas at surface, where blast holes should be sampled prior to assigning this material barren.

Special interest should be paid to the deeper, well mineralised areas.

Revert back to 1m sample composites for the MRE due to better geostatistical control, within a wireframe constructed on the base of 5m composites.

QAQC data from all existing drill holes shall be stored in one single file, not separated by drill campaign and hole type.

If further RC drilling for grade control will take place, true field duplicates shall be taken from the original 40kg bag after the first split. This will help to better quantify the nugget effect.

Continued structural knowledge should be obtained from pit wall mapping and integrated into the model. This will increase confidence in the southern areas, where little drilling has been done so far.

18 REFERENCES

Pohl, J. (2022) 20220512_Informe_Actualisación_Modelo de recursos_Mayo_2022_EN

Pohl, J. (2021) 20210825_Informe_Actualisación_Modelo de recursos_Julio_2021

Saloro (2021) BARRUECOPARDO_DDH_QA/QC. Internal document.

Pohl, J. (2020) Filenote SALORO Blast-RC-topcut-elements

Pohl, J. (2019) QAQC Protocol Saloro

The Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia, The JORC Code, 2012 Edition. Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code)

Walters, N.; Titley, M. (2012) Mineral Resource Estimation, Barruecopardo Tungsten Deposit, Spain. CSA Report R109.2012. CSA Global report for Saloro SLU.

Sanderson, D. J. et. al. (2008) Quantitative Analysis of Tin- and Tungsten-Bearing Sheeted Vein Systems, Society of Economic Geologists, Economic Geology v. 103 pp 1043-1056.

IGME (Instituto Geológico y Minero de España) 1:50.000 geological map (Vilvestre 449) MAGNA50 edition Digital map and description.

Arribas, A., 1979, Les gisements de tungstène de Barruecopardo: Chronique de la Recherche Miniére, v. 450, p. 42–49.

Arribas, A., Arribas Rosado, A., Gumiel, P., Martin Izard, A., and Reguilon, R., 1987, Caracteres metalogénicos de los yacimientos minerales asociados a los granitoides del Macizo Hesperico, in Bea, F., Carnicero, A., Gonzalo, J.C., López Plaza, M., and Rodriguez Alonso, M.D., eds., Geología de los granitoides y rocas asociadas del Macizo Hespérico: Madrid, Editorial Rueda, p. 233–263.

JORC Table 1

Appendix B

Saloro collars

Appendix C

Table 1 Saloro Relevant intersections

Appendix D

Competent Person Consent Form - M. Jörg Pohl

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Saloro reverse circulation (RC) drill samples are collected over 1m intervals. Multiple methods were used to determine Tungsten mineralisation (WO ₃) intervals including visual analysis for quartz, originating from veins and UV fluorescense light analysis. Intervals identified to possibly contain tungsten mineralisation were selected and submitted for internal laboratory assay analysis.
		Saloro diamond drill (DD) core was sampled using 0.05-3.6m intervals in the mineralised zones, including areas of suspected internal low grade or waste. Since 2021 interceptions are between 0.5m and 1.4m, aiming for 1m intervals in addition to the mineralized interval, the sampling is extended 1 or 2m in the hanging and the foot wall of the interpreted mineralised zone. Half core was used for sampling, unless a duplicate sample was taken. In this case quarter core was used.
		Saloro blast hole sampling results have not been used for this resource estimation.
		No historic drill core or historic assay analysis prior to 2006 was used for this resource estimation.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Standards and blanks are inserted into the sample stream to assess the accuracy, precision and methodology of the internal laboratory used. In addition, field duplicate samples are inserted to assess the variability of the WO ₃ mineralisation. Approximately 10-15% of all samples relate to quality control. In addition, the internal laboratory undertakes their own duplicate sampling as part of their internal QA/QC processes. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.
		Drill hole collar locations are surveyed by a qualified internal Saloro surveyor using standard differential GPS (GNSS) equipment TYPE Leica GS14 and tablet CS15, achieving sub decimeter accuracy in horizontal and vertical position. Down-hole surveys are only undertaken since September 2019. 27 DD holes (BD027 to BD053) using a Gyro (type Reflex). Measurements are taken every 5 m down hole. Gyro measurements are not affected by magnetism, in addition no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m	RC drill samples are collected over 1m intervals and split on site, using a three-tier riffle splitter to provide an approximate 3-5kg sample. In rare cases, wet samples are split using a cone and quarter method.
	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Samples are further split in the core shed using a small riffle splitter such that approximately 800g samples are generated and sent to the internal preparation laboratory. Here, samples are dried, fine crushed down to below 3mm, and pulverised with at least 85% of the sample passing 75µm. 30-50g of sample is separated to make a 10g pressed powder pellet for X-ray fluorescence (pppXRF).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	Saloro drilling comprised both DD, using HQ size with occasional PQ size in the top hole and RC drilling using a 140mm diameter face sampling hammer.
	sampling bit or other type, whether core is oriented and if so, by what method, etc).	For angled DD no oriented core was achieved. A selected number of short DD holes (BD001-BD027) were logged using an acoustic Televiewer for structural analysis.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Saloro DD typically recorded overall core recoveries in excess of 90%, which is considered acceptable.

Criteria	JORC Code explanation	Commentary
		Saloro RC drill samples are collected over 1m intervals through a cyclone. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Individual sample bags are not weighed to assess sample recovery, but a visual inspection is made by the Company geologist to ensure all samples are of approximately equivalent size. All inspections for recovery are considered as appropriate.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The DD drill rigs used face discharge bits to ensure a low contact between the rock and drilling fluids, minimising ore washing.
		Core was cut using a water saw with care taken to ensure minimal ore loss.
		The RC drilling rigs used suitably sized compressors to ensure dry samples where possible. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Sample logs record whether the sample is dry, moist or wet.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	To avoid any core flushing, the use of water in core recovery for DD is controlled.
	preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.
		The RC sample recoveries are of an acceptable level and no bias is expected from any sample losses.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Saloro logging of DD core included recording descriptions of lithology intervals, which were then coded into the database.
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Saloro geotechnical logging of DD core included recording descriptions of integrity (recovery and RQD), materials (lithology, and alteration).
		Saloro structural logging of DD core included recording descriptions of structure type, structural angles, fracture intensity and infill type.
		Saloro geological logging of RC chip samples included recording descriptions of lithology, weathering, alteration, and mineralisation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging is qualitative in nature.
		Saloro DD core boxes were photographed both dry and wet and photos are stored on the local server.
	The total length and percentage of the relevant intersections logged.	All DD and RC drill holes are logged in full by the company geologists and written into a digital database in Excel format.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Saloro DD core was sampled using 0.05-3.6m intervals in the mineralised zones, including areas of internal low grade or waste.
		Average length of 96% of the samples is between 0.8-1m. In addition the sampling was extended by 1 or 2m up and down hole from the interpreted mineralised zone.
		Half or quarter core was used for sampling. The remaining core is stored back in the respective core box.
and sample preparation	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	Saloro RC drill samples were collected at 1m intervals. RC intervals were sampled by splitting dry samples in the field to 3-5kg using a three-tier riffle splitter. This sample was taken to the core shed geologically logged and further split to 0.8-1kg using small riffle splitter. Where samples were wet, they were dried prior to spitting.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Saloro analytical samples are systematically prepared and analyzed in Saloro's internal on-site laboratory. Samples were dried, fine crushed down to 70% below 3mm and pulverised with at least 85% of the sample passing 75µm. 10g of sample was used for analysis by pressed powder pellet XRF method. The XRF ppp method is considered appropriate for this style of Tungsten mineralisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Previous field tests have determined that the sample size and method of sampling produce representative RC samples. QA/QC procedures involve the use of standards, duplicates and blanks which are inserted into sample batches at a frequency of approximately 15-20%.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate splits of RC samples are taken every 10m down hole within the sampled intervals. The results from these duplicates generally show acceptable repeatability. In some cases, indications of inhomogeneity were observed in a number of duplicates, mainly concerned are samples with grades below 0.05% WO ₃ . 5% of the sample pulps are sent to an Umpire lab (ALS Loughrea). Results show good repeatability.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The Tungsten mineralization occurs within quartz veins as coarse scheelite and to a minor content as wolframite minerals. Previous test work carried out by Saloro using different sample sizes has demonstrated that the selected sample size is appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Saloro assayed samples for Tungsten using the XRF Fluorescence Spectrography method with pressed powder pellets. This analytical method reports total tungsten content.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical surface or downhole tools are used to achieve analytical grades.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Standards (CRM certified reference material), blanks and duplicates were regularly inserted into the sample stream by Saloro, with approximately 15-20% of all samples related to quality control. The internal laboratory also used their own process of QA/QC inserting standards, pulp repeats, sample duplicates and blanks.
		Review of the Saloro quality control samples, as well as the internal laboratory quality QA/QC reports, has shown no sample preparation issues, acceptable levels of accuracy and precision and no bias in the analytical datasets.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Reported significant intersections have been checked and verified by Senior Geological management. In addition, selected significant intersections have been checked by the Independent CP.
	The use of twinned holes.	Two twin holes have been drilled in the early stage of the development of the deposit, BAR0046bis and BAR056bis. Correlation between both is however challenging, as separation between holes is >7m at first mineralized intercepts. Probably as well due to the high nugget effect seen for the entire deposit and as well on DD hole duplicates.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All primary data was recorded in templates designed by Saloro. Assay data from the internal laboratory is received in digital and downloaded directly into the Excel spreadsheet, managed by the company's chief geologist.
		Data is entered into controlled excel templates for validation.
		Regular backups of all digital data are undertaken. These procedures are documented in an internal report (Core drilling – QAQC, May 2021)
	Discuss any adjustment to assay data.	Tungsten assay data is received from the internal laboratory as WO_3 % and is imported as such into the database. Likewise with the three other analytical elements As, P and S.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Saloro drill hole collar locations were surveyed by their internal surveyors after drilling, using a standard differential GPS (DGPS) equipment achieving sub decimeter accuracy in horizontal and vertical position.
		Saloro down-hole surveys were undertaken by SPIDRILL S.A.U. on selected DD holes using a Reflex Gyro down-hole deviation probe. Measurements were taken every 5m down. Not affected by Gyro measurements, however no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.
	Specification of the grid system used.	The grid system is ETRS 1989 UTM Zone 29N.

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Topographic control is based on a digital terrain model with sub metric accuracy and in the open pit area down to 2.5cm/pixel resolution generated through an internal drone survey and is verified through detailed drill hole collar surveys by Saloro's qualified surveyor using a DGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The majority of the Saloro drilling was undertaken on a notional 35m to 50m grid, with section lines orientated approximately perpendiculat to the interpreted strike of the mineralisation.
		DD drilling was undertaken in various phases, targeting differen objectives over time. Initial drill spacing was 50m. Later drilling targeted to infill eventual gaps and investigate the deeper easterr areas of the deposit with an approximate average spacing of 35m Some deeper areas are poorly informed.
		RC drilling was used for grade control in the shallow areas, drilled and mined between 2019 and 2023. Hole spacing was 10m with a line spacing of 50m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	RC data spacing (10m lines by 50m) is considered sufficient to assume geological and grade continuity, and allow the estimation or Inferred, Indicated and Measured Mineral Resources.
		DD data spacing (35m by 35m) is considered sufficient to assume geological and grade continuity, and allow the estimation of Inferred Indicated and Measured Mineral Resources.
	Whether sample compositing has been applied.	No compositing of samples in the field has been undertaken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The Saloro Tungsten deposit in Barruecopardo occurs withir extentional dilational NNE-SSW aligned subvertical structures in a granite hosted, sheeted vein system. Oriented inclined drilling (RC and DD) aims to cut those structures perpendicularly, with a predominant orientation of 285 (eastern flank) 105 (western flank) and inclinations of -60°. Sampling is considered to be unbiased.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling (DD and RC) is oriented and inclined. Due to the interpreted subvertical mineralized and well oriented veins (NNE-SSW), no sampling bias is considered to have been introduced by the orientation of the drilling.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by Saloro. Samples were transported from the drill site by company vehicles to a sample preparation shee where samples are prepared for dispatch. Prepared samples are taken directly from the sample preparation shed to the interna laboratory (same core shed). Sample submission forms are sent in paper form with the samples as well as electronically to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures, as well as QA/QC data, are reviewed internally on an ongoing basis. Jörg Pohl (CP, Geology Consultant, Independent Resource Geologist) has independently reviewed the sampling techniques, procedures, and data. He has undertaken various site visits since 2019 to review and inspect the application of procedures. These reviews have concluded that the sampling and analytical results have resulted in data suitable fo incorporation into Mineral Resource estimation.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Barruecopardo Tungsten Prospect lies within the Mining Concession (concesión de explotación) C.E. BARRUECOPARDO Nº 6.432-10 which is 100% owned by Saloro SLU. The Barruecopardo mining Concession has been granted in 2014 by the Spanish mines department for a 30-year period and is renewable two times for the same period until the year 2104.

Criteria	JORC Code explanation	Commentary
		The Barruecopardo mining concession lies within a special protection are for birds forming part of the EU Nature Network 2000. The mining and processing area is located adjacent to the village of Barruecopardo.
		The current environmental impact authorisation is based on the "Declaracion de Impacto Ambimental (DIA), published in the local governmental announcement "Boletín Oficial de Castilla y León" (BOCYL nº 25, dating 6 of February 2014), ORDEN FYM/45/2014.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure in the form of a Mining Concession has been granted in 2014 and is considered secure. The mine has been reopened in 2019 and is operating since that time. There are no known impediments to operations.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Although other parties have been developing the mine previously, the entire dataset, all work referred to and used for this study has been realized and provided by Saloro SLU.
Geology	Deposit type, geological setting and style of mineralisation.	Geologically, the Barruecopardo mine is situated within the Central Iberian Zone and characterized by paleozoic metasediments of the Shist-Grauwacke Complex (CEG), and large units of granitic varican rocks intruded into those metasediments.
		In the Barruecopardo prospect, the mineralization is hosted within sheeted narrow quartz vein swarms, oriented NNE-SSW and steeply dipping at 80-85° towards the ESE. Main Tungsten mineral is Scheelite with a minor content of Wolframite. Tungsten is often associated with sulfides (pyrite, arsenopyrite, chalcopyrite).
		The tectonic activity which is the origin of those shear vein deformation is of variscan age when spaces have been filled during the active period.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Details of all reported drill holes are provided in Appendix B of this report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All information is Material and has been included in Appendix B of this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported drill intersections are based on chemical assay data and are calculated using a 0.05% WO ₃ cut-off. No high grade cut has been applied to the dataset.
		A composite length of 5m has been chosen within the modeled wireframes.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralised intervals are typically very narrow, reflecting the vein-style mineralization of the deposit. All intervals have been tabulated in Appendix C; no aggregation has been made.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drilling was planned in such a way as to intersect expected mineralisation in a perpendicular manner. The tungsten mineralisation has been observed subvertical, consequently all RC and DD holes have been drilled inclined between -36 and -71 degrees. The reported down-hole intervals are recalculated to true widths. The sheeted vein

Criteria	JORC Code explanation	Commentary	
intercept lengths		swarms are grouped into 5m composites Intercepts a	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The reported down-hole intervals are recalculated to true widths.	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams, including a drill plan and cross sections, are included in the main body of this report.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported in Appendix C of this report.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A downhole geophysics study with CORELOG INGENERIA using a acoustic televiewer, a spectral gamma ray and a dual induction to have been realized in 2019.	
		Multi Element chemical data is used for most of the chemical data with the objective to characterize geochemical patterns, economic elements or eventual deleterious elements.	
		Bulk density measurements are unchanged from the previously MRE 2011 (CSA) who derived an average density value of 2.62 from a total of 934 samples originating from 22 holes.	
		Geotechnical test work reporting is ongoing on a two-month basis. A geomechanical study has been performed by Golder in 2020, on pit wall stability.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	No immediate further work is planned for the Barruecopardo Prospect. New drilling could target inferred areas to raise those into higher categories and increase geological confidence.	
		Mineralisation remains open along strike and at depth, with both areas to be targeted in subsequent drilling campaigns.	
		Geological studies will focus on detailed interpretation of structural information, and it's influence on grade distribution.	
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diagrams and cross sections are shown in the main body of this report.	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Drill hole data is stored in a secured and access restricted Excel spreadsheet on the server. Drill data recorded in a spreadsheet is transferred to the database by the project geologist who is responsible for reviewing and validating the data. Assay data is received from the internal laboratory in digital format and is loaded directly into the database. Geological logging is restricted to appropriate codes relevant to the local geology, mineralisation and alteration setting. A copy of the master database in MS Access format is linked to Surpac mining software for Mineral Resource Estimation (MRE).

Criteria	JORC Code explanation	Commentary
	Data validation procedures used.	Database validation checks including collar survey position, down hole survey control, assay limits, sample intervals and logging codes are completed prior to the data being transferred to the master database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Sampling techniques and procedures, as well as QA/QC data, are reviewed internally on an ongoing basis. Jörg Pohl, (CP, Geology Consultant, Independent Resource Geologist) has reviewed the sampling techniques, procedures, data and resource estimation methodology. He has undertaken a number of site visits, the most recent being in August 2023, to review and inspect the application of these procedures. He concludes that the sampling and analytical results available are appropriate for estimation of the Mineral Resource.
	If no site visits have been undertaken indicate why this is the case.	Site visits have been undertaken.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence of the geological interpretation is appropriate for the current level of resource estimation. The resource is defined within mineralised envelopes which encompass all zones of significant mineralisation.
	Nature of the data used and of any assumptions made.	Geology and mineralisation interpretation is based on geological logging and sample assays derived from RC and DD drilling, along with cross sectional interpretations which include surface mapping information and geophysical studies (acoustic televiewer).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Structural studies show dips of structures to vary between 50° and 85° with a predominant subvertical dip of 80 to 85°. Structural control is understood to be the principal factor of the tungsten mineralisation for the Barruecopardo, sheeted vein style deposit.
	The use of geology in guiding and controlling Mineral Resource estimation.	On the deposit scale the grade is interpreted to be more influenced by structure.
	The factors affecting continuity both of grade and geology.	Geological logging and chemical assay of samples from drill holes has demonstrated the continuity of the grade and mineralised structures between sections. Breaks in continuity are minor. If observed, they are likely due to structural offsets, some of which have been observed or interpreted from surface mapping.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Barruecopardo mineralisation covers an area of approximately 1.6km by 0.1-0.3km and is still open to both sides (NE and SW) and towards depth, showing mineralisation beyond 400m below surface.
Estimation and modelling techniques	technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of	A mineralised envelope at Barruecopardo is created encompassing all zones of significant mineralisation. A number of nine different domains have been interpreted using geological information and chemical grades. Assay WO ₃ data has been composited to 5m intervals with a minimum grade of 0.05% WO ₃ , allowing for internal waste.
	computer software and parameters used.	Geostatistical variogram modelling was used to determine appropriate parameters for estimation of tungsten grade, using Ordinary Kriging (OK) for all domains in order to simulate the grade tonnage distribution based on a Selective Mining Unit (SMU) of 6m x 6m x 5m (x-y-z).
		Surpac software was used for mineralisation volume interpretation and tungsten grade estimation.
		Chemical assay data is from DD and RC sampling. For all other intervals that have been considered barren, a background grade of 0.002% WO ₃ has been used. For the deleterious elements As, P and S, respective background values of 0.005% , 0.004% and 0.005% have been applied.
		The drill hole spacing is approximately 40m in the eastern part of the deposit and down to 460m of depth and in the northwestern part down to an RL of 590m.

Criteria	JORC Code explanation	Commentary		
		No drilling took place below an RL of the main pit.	of 650m, in the s	outhwestern part
		Nine mineralisation domains were ic	lentified (D1, to I	09).
		5m sample composites were used to by 5m (x/y/z) parent blocks using C and y directions to 1.5m x 1.5m. No	DK. Sub blocking	g is allowed for x
		No Top cut was applied. To reduce grade samples, large composites of of internal of internal waste, given of WO ₃ . The 5m composites are co minable intervals, in contrast to the	5m were used, a composite grade onsidered to re	allowing up to 4m es exceed 0.05% flect operational
		Appropriate search volumes, min numbers and block sizes were used Neighbourhood Analysis. The vario used. All other relevant estimation table below:	d, based on the ogram nugget va	results of Kriging alue of 47% was
		Barruecopardo ordinary kriging estima	-	
		Parameters (1st/2nd/3rd pass)	Domains 1-6	Domains 7-8-9
		Minimum composite samples to estimate one block	4/3/2	4/3/2
		Maximum composite samples to estimate one block Search ellipse Major Range (m)	6/5/4 50/100/160	6/5/4 50/100/160
		Search ellipse Semimajor Range (m)	42/83/133	42/83/133
		Search ellipse Minor Range (m)	6.3/6.3/6.7	6.3/6.3/6.7
		Max composite samples per hole	2	2
		Max vertical distance to sample	25/35/45	25/35/45
		Search ellipse bearing Major (degrees)	15	10
		Search ellipse plunge (degrees) towards SSW	5	5
		Search ellipse dip (degrees)	-85	-85
		Discretisation points	4/4/4	4/4/4
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	In-situ dry bulk densities were assig common value of 2.62 g/cm ³ was us The current resource estimate was internal resource estimate (CSA 20 were based on earlier drill campa (2012, 2019, 2021 and 2022). All of taking ongoing mining operations an into account.	sed to estimate t as compared w 012 and Jorg P aigns and reso which support th d different estim	onnage. ith the previous ohl 2022) which urce estimations e current results, ation parameters
	The assumptions made regarding recovery of by-products.	The resource model estimates Tung and the following elements, conside P, S. (single pass ID ² estimation)	red as deleteriou	us elements: As,
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Deleterious elements are Urar Phosphorus. None of them is a significance.		
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	The tungsten grade is estimated int blocks using an Ordinary Kriging thr compares to the average drill spacin An SMU size was chosen to mato mining methodology with 5m bench	ee pass estimat ig of 35–50m in t ch_the_feasibility	ion process. This x and y direction. y study open cut
	Any assumptions behind modelling of selective mining units.	SMU dimensions have been chosen backhoe excavators and dump truck		election of haul
	Any assumptions about correlation between variables.	Tungsten is the only economic m resource model.		
	Description of how the geological interpretation was used to control the resource estimates.	Structural orientations and chemica the volume of the resource estimate of the mineralisation volume and as continuity above a 0.04% WO ₃ grad	e by restricting t sociated sample	he interpretation
		The domains are based on geology with defined zones of mineralisation across strike.		

Criteria	JORC Code explanation	Commentary
	Discussion of basis for using or not using grade cutting or capping.	Tungsten grade distribution exhibits a strong nuggety effect. It was decided to use single high grades as such and not to apply any top cut. Nevertheless, to compensate for those outliers and an eventual bias, it was decided to composite individual samples to 5m composites for the estimation process, allowing up to 4m of internal low-grade material if the weighted composite grade does not fall below the lower limitation of 0.05% WO ₃ . This permits to model and integrate continuous narrow veins into the estimation, conserving uncut grades.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Validation of the MRE included visual inspection of the grade distribution compared to the drill data, comparison of block model statistics to the sample statistics and the generation of swath plots. This validation process confirmed that the MRE appropriately represents the grade and tonnage distribution of the tungsten mineralisation at the confidence levels reported.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The resource tonnage is reported on a dry bulk density basis. In-situ specific gravity measurements were completed on dry DD core using the "Archimedes" principle. Sample grades are reported using dry weight. No moisture content of DD core has been determined.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The MRE has been reported using a 0.05% WO ₃ cut-off grade. Based on the current tungsten market, reporting of the MRE at a 0.05% cut- off grade is both justifiable and consistent with previous published MRE's for this style of mineralisation.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The DFS and ongoing mining activity since 2019 demonstrated that the Barruecopardo resource can economically be extracted using open pit mining methods. Indicative parameters used for pit optimisation purposes in recent studies are (communicated from the Saloro mine manager): Tungsten selling price: 279.45-364.5 \$/MTU Total Mining Cost: 1.62 \$/t Mining recovery: 96% Mining dilution: 7% Plant Process Cost (incl. G&A cost): 11.64 \$/t Recovery WO ₃ : 64%
		Slope angle: 45-59⁰ Selling costs: 4.04 (\$/MTU) Exchange rate (\$/€): 1.12 Discount rate: 8%
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work on representative samples across a range of ore types has been undertaken for the Barruecopardo deposit. The results of this test work showed the mineralisation to be amenable to gravimetric separation, with tungsten recoveries set out in the original DFS completed by Saloro at over 75% recovery of WO ₃ but results in the order of 47% recovery of WO ₃ (written communication Saloro) in the past year.
with a		Recent test work investigated increasing recovery from the fines which are currently considered as reject and sent to tailings as an opportunity to increase recovery. This work was undertaken by Wardell Armstrong Int and employs the use of Falcon Concentrators for the recovery of the ultra-fine fraction. These Falcon Concentrators have been purchased and are set for installation in 2024.
		In addition to this, an Australian independent metallurgical consultancy "In Search of Excellence" led by Kevin Hamey, has been engaged for the overall processing circuit and has developed a structured program to increase recoveries from their current levels through a structured road map to achieve a 64% recovery in the near term and a 75% recovery as per the original DFS model on an ongoing basis in the long-term.
		Lastly, in addition to the original BFS, a recent process upgrade has been installed at the Barruecopardo processing plant, being two TOMRA XRT Sorters. These high-tech machines have had a

positive impact overall, seeing a +90% recovery on feed to the XRT Sorter. This reduces overall mass early on in the process, concentrates tungsten bearing ore after initial crushing, and lowers overall processing costs. The XRT Sorters help to reduce mass going to the quaternary crusher circuit at the Barruecopardo process plant and reduce ultra-fines generation overall, which is one of the current recovery loss drivers.

Ultimately, the recovery losses appear to be mainly process related and confidence is high that they will rectified under the metallurgical program set out by the metallurgical consultants and use of the Falcon Concentrators as recommended by Wardel Armstrong. Overall, these process improvements, all lead toward a reasonable and economic recovery assumption of 64%.

Waste and process residue disposal as per environmental impact study (DIA) dating 6th of February 2014 and published in BOCYL n°25) to the respective tailings and waste dumps.

On 6th of March 2021 Saloro S.L.U. applied for authorisation to modify the current tailings dump. Authorisation has been given on 15th of November 2021.

A newly modification is planned (2023), concerning a volumetric change of the tailings damp. Authorisation has not been given yet, Saloro S.L.U. however considers all necessary authorisations in respect to this project, to be achievable.

No further potential environmental impacts of the mining and processing operation are known.

Environmental factors or assumptions Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.

Criteria	JORC Code explanation	Commentary			
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether	In-situ dry bulk density values were derived from DD core samples, using the Archimedes water immersion method.			
	wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	From 934 individually analysed samples with origin of 22 different DD holes, a single value has been adapted for the entire deposit, which is 2.62 g/ccm.			
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Rocks over the entire deposit are fresh and competent. Rock is competent enough to ensure the method used, takes into account any rock porosity.			
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	One common density measurement has been classified by geological logging.			
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The reported MRE has been classified as Measured, Indicated and Inferred after consideration of the following:			
		Adequate geological evidence and drill hole sampling is available to assume geological and grade continuity.			
		Adequate in-situ dry bulk density data is available to estimate appropriate tonnage factors.			
		Adequate mining, metallurgy, and processing knowledge to imply potential prospect for economic extraction.			
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The reported MRE has been classified with consideration of the quality and reliability of the raw data, the confidence of the geologic interpretation, the number, spacing and orientations of intercept through the mineralised zones and knowledge of grade continuing gained from observations and geostatistical analysis.			
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported MRE and its classification are consistent with the Competent Person (CP) view of the deposit. The CP was responsible for determining the resource classification.			
	The results of any audits or reviews of Mineral Resource estimates.	Saloro has undertaken a review of the previous MRE and concluded that the estimate was developed using industry standard methods and that the estimate was considered to reflect the understanding of the geology and grade continuity.			
		Jörg Pohl (CP, Geology Consultant, Independent Resourc Geologist) reviewed the reported MRE and concluded that th estimate appropriately represents the grade and tonnage distribution of tungsten mineralisation at confidence levels commensurate with the Inferred, Indicated and Measured resource classification.			
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of	The confidence level is reflected in the resource classification category chosen for the reported MRE. The definition of Indicated and Inferred Mineral Resources is appropriate for the level of study and the geological confidence imparted by the drilling grid.			
	statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The reported MRE is considered appropriate and representative of the grade and tonnage at the 0.05% WO ₃ cut-off grade. The application of geostatistical methods has helped to increase the confidence of the model and quantify the relative accuracy of the resource on a global scale. It relies on internal data sourced by recent drilling. The relevant tonnages and grades are variable on a local scale for SMU dimensions of 5m by 5m by 6m (x/y/z).			
		The CP considers that the current drilling grid is sufficient for classification of the Mineral Resource as Measured, Indicated, of Inferred.			
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Barruecopardo deposit is likely to have local variability. The global assessment is an indication of the average tonnages and grade estimate for each geological domain.			

Criteria	JORC Code explanation	Commentary
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The Barruecopardo mine is under production since 2019. Recent reconciliation has shown differences between the current resource model and production numbers. This new model aims for better reconciliation through relevant modifications in modelling and resource estimation, such as newly adjusted wireframes, 5m composites allowing internal waste as, more restricted search volumes and the replacement of missing intervals by background values, accounting for higher internal dilution.

APPENDIX B

hole_id	x_collar	y_collar	z_collar	max_depth	drill_start_date	drill_end_date	hole_type
BAR01	696200.7	4547289	726.932	161.65	23-Feb-06	29-Mar-06	DDH
BAR02	696313	4547289	722.43	321	5-Apr-06	11-Apr-06	DDH
BAR03	696216.5	4547485	727.22	161.05	9-May-06	22-May-06	DDH
BAR04	696223.7	4547689	731.26	160	22-May-06	29-May-06	DDH
BAR05	696262.6	4547478	730.02	161.85	30-May-06	8-Jun-06	DDH
BAR06	696328.5	4547476	726.16	280.5	12-Jun-06	15-Jul-06	DDH
BAR07	696294.1	4547685	729.91	241.85	18-Jul-06	28-Jul-06	DDH
BAR08	695277.7	4546825	705	139.5	29-Jul-06	16-Aug-06	DDH
BAR09	696218.3	4547433	727.828	150	16-Feb-07	27-Feb-07	DDH
BAR10	696220.7	4547535	727.524	150.8	28-Feb-07	7-Mar-07	DDH
BAR11	696214.4	4547587	728.007	150.3	8-Mar-07	15-Mar-07	DDH
BAR12	696228.3	4547645	730.037	150	16-Mar-07	25-Mar-07	DDH
BAR13	696235.1	4547735	733.323	157.5	26-Mar-07	30-Mar-07	DDH
BAR14	696246.9	4547796	734.357	150.1	30-Mar-07	2-Apr-07	DDH
BAR15	696251.3	4547834	732.192	150.2	2-Apr-07	6-Apr-07	DDH
BAR16	696321.6	4547958	726.103	210.5	7-Apr-07	13-Apr-07	DDH
BAR17	696266.8	4547875	728.802	150.45	23-Jul-07	5-Aug-07	DDH
BAR18	696329.2	4547819	733.043	290.2	7-Aug-07	3-Sep-07	DDH
BAR19	696284.4	4547562	728.605	285.45	31-Aug-07	15-Sep-07	DDH
BAR20	696149	4546682	697.544	213.9	11-Sep-07	19-Sep-07	DDH
BAR21	696220.1	4547389	726.509	172.2	21-Sep-07	27-Sep-07	DDH
BAR22	696215.6	4547336	726.899	181.2	28-Sep-07	5-Oct-07	DDH
BAR23	696173.5	4547234	722.729	160	5-Oct-07	16-Oct-07	DDH
BAR24	696063.7	4547154	713.101	153	17-Oct-07	22-Oct-07	DDH
BAR25	696051.3	4547096	705.897	151.8	23-Oct-07	27-Oct-07	DDH
BAR26	696223.9	4546919	712.164	92	28-Oct-07	8-Nov-07	DDH
BAR27	696333.6	4547365	720.821	304.15	28-Oct-07	16-Nov-07	DDH
BAR26BIS	696252.7	4546885	711.774	295.2	9-Nov-07	21-Nov-07	DDH
BAR28	696257	4547481	728.57	217.3	17-Nov-07	24-Nov-07	DDH
BAR29	696298.5	4547730	730.738	220.5	22-Nov-07	29-Nov-07	DDH
BAR30	696323.9	4547921	727.586	213.4	25-Nov-07	11-Dec-07	DDH
BAR31	696266	4547626	729.435	205.3	29-Nov-07	13-Dec-07	DDH
BAR32	696464.4	4547899	733.411	100.2	13-Dec-07	16-Dec-07	DDH
BAR34	696465.4	4547823	731.252	87	14-Dec-07	18-Dec-07	DDH
BAR33	696067	4547201	711.618	151.1	16-Dec-07	10-Jan-08	DDH
BAR36	696276	4547012	715.235	205.4	14-Jan-08	22-Jan-08	DDH
BAR35	696208.2	4546770	700.787	277.3	10-Jan-08	24-Jan-08	DDH
BAR38	696099.3	4546558	688.277	175.4	25-Jan-08	31-Jan-08	DDH
BAR37	696309.8	4547107	714.776	217.4	23-Jan-08	7-Feb-08	DDH
BAR39	696280.2	4547297	726.76	145.1	1-Feb-08	7-Feb-08	DDH
BAR40	696352.4	4547284	713.685	223.3	8-Feb-08	15-Feb-08	DDH
BAR40 BAR41	696370.1	4547402	715.535	174.8	8-Feb-08	16-Feb-08	DDH
BAR41 BAR42	696382	4547354	712.715	199.25	16-Feb-08	22-Feb-08	DDH
BAR43	696318.4	4547417	724.319	169.6	19-Feb-08	25-Feb-08	DDH
BAR44	696290.8	4547255	724.313	115.3	25-Feb-08	27-Feb-08	DDH
BAR44 BAR45	696297.9	4547326	725.436	111.3	26-Feb-08	29-Feb-08	DDH
BAR45 BAR46	696350.1	4546858	692.808	310.3	10-May-08	26-May-08	DDH
BAR46BIS	696352	4546863	693.025	443	27-May-08	21-Jun-08	DDH
BAR40BIS	696232.9	4546831	710.871	270.1	-		
DAK47	090232.9	4540851	/10.8/1	270.1	27-Aug-08	6-Sep-08	DDH

BAR48	696232.2	4546831	710.876	219.8	8-Sep-08	16-Sep-08	DDH
BAR49	696199.7	4546708	698.05	251.1	16-Sep-08	30-Sep-08	DDH
BAR50	696284.9	4546953	702.007	269.8	17-Sep-08	1-Oct-08	DDH
BAR51	696052.2	4546451	693.362	109.95	2-Oct-08	7-Oct-08	DDH
BAR52	696284.2	4546953	702.029	213.95	2-Oct-08	10-Oct-08	DDH
BAR53	696035.1	4546483	686.904	72.45	8-Oct-08	15-Oct-08	DDH
BAR54	696118	4546641	697.771	139.85	16-Oct-08	23-Oct-08	DDH
BAR55	696148	4546734	706.601	177.45	16-Oct-08	24-Oct-08	DDH
BAR56	696144.2	4546628	697.154	83	8-Oct-10	19-Oct-10	DDH
BAR56BIS	696144.8	4546626	697.186	241.9	21-Oct-10	3-Nov-10	DDH
BAR57	695995.6	4546589	682.784	93.2	4-Nov-10	7-Nov-10	DDH
BAR58	696087.7	4546540	688.047	150	8-Nov-10	13-Nov-10	DDH
BAR59	695976.9	4546549	683.046	74.6	16-Nov-10	26-Nov-10	DDH
BAR60	696114.6	4546587	694.574	153.5	28-Nov-10	5-Dec-10	DDH
BAR61	696098.9	4546620	698.254	135.1	6-Dec-10	12-Dec-10	DDH
BAR62	696119.9	4546663	698.324	150.1	13-Dec-10	20-Dec-10	DDH
BAR63	696225.9	4546739	698.898	337.8	3-Jan-11	17-Jan-11	DDH
BAR64	696138.6	4546713	705.428	149	13-Jan-11	19-Jan-11	DDH
BAR66	696226.7	4546790	701.579	235.2	3-Jan-11	20-Jan-11	DDH
BAR65	696243.3	4546861	711.079	223.1	18-Jan-11	24-Jan-11	DDH
BAR67	696290.5	4547033	716.025	229.5	25-Jan-11	1-Feb-11	DDH
BAR68	696292.8	4547059	714.919	198.7	2-Feb-11	9-Feb-11	DDH
BAR69	696215.5	4546817	706.37	248.2	4-Feb-11	17-Feb-11	DDH
BAR70	696054	4547043	710.382	279.7	11-Feb-11	25-Feb-11	DDH
BAR71	696319.5	4546894	696.005	260.6	16-Feb-11	28-Feb-11	DDH
BAR72	696312.4	4547227	717.67	157	18-Feb-11	28-Feb-11	DDH
BAR73	696297.7	4546927	699.06	320.1	25-Feb-11	7-Mar-11	DDH
BAR75	696311.4	4546974	701.265	226.2	1-Mar-11	11-Mar-11	DDH
BAR74	696309	4546819	692.804	384.3	28-Feb-11	12-Mar-11	DDH
BAR76	696406.9	4547488	714.492	192.6	22-Mar-11	29-Mar-11	DDH
BAR77	696369	4547502	719.927	191.8	30-Mar-11	8-Apr-11	DDH
BAR78	696369.7	4547450	719.081	153.6	8-Apr-11	14-Apr-11	DDH
BAR79	696024.3	4547540	714.01	153	13-Apr-11	14-Apr-11	DDH
BAR80	696002.2	4547445	711.937	150.6	20-Apr-11	2-May-11	DDH
BAR81	696439.1	4547393	708.637	264.3	29-Mar-12	12-Apr-12	DDH
BAR82	696484.8	4547376	706.07	285.2	17-Apr-12	24-Apr-12	DDH
BAR84	696505.5	4547311	703.833	341.5	1-Oct-15	23-Oct-15	DDH
BAR86	696366.8	4546985	699.46	418.5	26-Oct-15	11-Nov-15	DDH
BAR83	696415.8	4547418	711.975	473.5	30-Sep-15	17-Nov-15	DDH
BAR85	696411.8	4546921	697.203	401.8	26-Oct-15	2-Dec-15	DDH
BAR85 BAR87	696422.2	4547229	706.192	359.6	18-Nov-15	14-Dec-15	DDH
BI0001	696272.3	4547328	728.721	40	21-May-18	22-May-18	RC
BI0001 BI0002	696288.7	4547321	727.052	40	22-May-18	22-10/ay-18 23-May-18	RC
BI0002 BI0003	696258.3	4547321	728.859	40	22-May-18 23-May-18	23-May-18	RC
BI0003 BI0004	696286	4547289		40			RC
			727.009		24-May-18	24-May-18	
B10005	696244	4547275	727.898	70	25-May-18	29-May-18	RC
BI0006	696281.8	4547258	724.698	40	29-May-18	29-May-18	RC
BI0007	695989.4	4546573	682.778	30	30-May-18	30-May-18	RC
BI0008	695986.7	4546543	682.636	30	30-May-18	31-May-18	RC
BI0009	696013.7	4546539	682.776	49	31-May-18	1-Jun-18	RC

BI0010	696023	4546567	680.727	50	1-Jun-18	1-Jun-18	RC
BI0011	696029.5	4546539	681.379	70	2-Jun-18	2-Jun-18	RC
BI0012	696005.3	4546510	683.244	52	3-Jun-18	4-Jun-18	RC
BI0013	696276.7	4547277	727.636	40	5-Jun-18	5-Jun-18	RC
BI0014	696290.2	4547303	728.715	40	6-Jun-18	6-Jun-18	RC
BI0015	696261.1	4547317	728.996	40	11-Jun-18	11-Jun-18	RC
BI0016	696251.8	4547288	728.41	46	11-Jun-18	12-Jun-18	RC
BI0017	696240.6	4547261	727.501	43	13-Jun-18	13-Jun-18	RC
BI0018	696278.8	4547342	730.007	40	13-Jun-18	14-Jun-18	RC
BI0019	696298.1	4547333	728.236	43	14-Jun-18	15-Jun-18	RC
BI0020	696265.1	4547265	725.918	70	15-Jun-18	16-Jun-18	RC
BI0021	696275.5	4547294	727.782	43	16-Jun-18	17-Jun-18	RC
BI0022	696265.5	4547282	727.679	40	17-Jun-18	17-Jun-18	RC
BI0023	696326.4	4547403	723.662	40	2-Aug-18	3-Aug-18	RC
BI0024	696309.5	4547395	727.043	44	6-Aug-18	6-Aug-18	RC
BI0025	696319.5	4547391	726.2	43	7-Aug-18	7-Aug-18	RC
BI0026	696317.8	4547374	726.011	40	7-Aug-18	8-Aug-18	RC
BI0027	696306.7	4547380	728.78	45	9-Aug-18	9-Aug-18	RC
BI0028	696282.7	4547374	730.624	46	10-Aug-18	10-Aug-18	RC
BI0029	696292.7	4547371	729.806	43	10-Aug-18	11-Aug-18	RC
BI0030	696302.7	4547368	728.966	46	11-Aug-18	12-Aug-18	RC
BI0031	696279.1	4547358	729.671	47	12-Aug-18	13-Aug-18	RC
BI0032	696288.7	4547353	728.347	47	14-Aug-18	14-Aug-18	RC
BI0033	696298.3	4547349	727.957	45	20-Aug-18	21-Aug-18	RC
BI0034	696307.7	4547344	727.502	43	21-Aug-18	22-Aug-18	RC
BI0035	696269.4	4547347	729.757	28	22-Aug-18	23-Aug-18	RC
BI0036	696288.7	4547337	728.977	46	23-Aug-18	24-Aug-18	RC
BI0037	696244	4547342	729.756	19	24-Aug-18	25-Aug-18	RC
BI0038	696253.6	4547338	729.818	47	25-Aug-18	26-Aug-18	RC
BI0039	696263	4547333	729.313	47	26-Aug-18	27-Aug-18	RC
BI0040	696280.7	4547325	727.892	13	27-Aug-18	28-Aug-18	RC
BI0041	696252	4547321	729.495	46	28-Aug-18	3-Sep-18	RC
BI0042	696222.9	4547335	728.67	46	3-Sep-18	4-Sep-18	RC
BI0043	696232.5	4547330	729.106	46	5-Sep-18	5-Sep-18	RC
BI0044	696242.4	4547326	729.471	46	5-Sep-18	6-Sep-18	RC
BI0045	696270.1	4547313	729.137	46	6-Sep-18	7-Sep-18	RC
BI0046	696278.9	4547309	728.749	45	7-Sep-18	8-Sep-18	RC
BI0047	696299.8	4547301	727.846	42	8-Sep-18	9-Sep-18	RC
BI0048	696198.8	4547329	726.947	43	9-Sep-18	10-Sep-18	RC
BI0049	696209.8	4547324	727.797	45	10-Sep-18	11-Sep-18	RC
BI0050	696219.8	4547320	728.743	46	11-Sep-18	12-Sep-18	RC
BI0051	696229.7	4547315	728.829	47	12-Sep-18	17-Sep-18	RC
BI0051	696238.7	4547311	728.933	31	22-Sep-18	23-Sep-18	RC
BI0053	696248.8	4547306	729.148	45	23-Sep-18	24-Sep-18	RC
BI0054	696268.4	4547298	728.093	46	24-Sep-18	25-Sep-18	RC
BI0055	696295.9	4547284	725.414	40	25-Sep-18	26-Sep-18	RC
BI0055	696305	4547283	724.952	39	27-Sep-18	27-Sep-18	RC
BI0050	696193.5	4547317	726.583	42	27-Sep-18	28-Sep-18	RC
BI0057	696204.3	4547311	727.299	42	28-Sep-18	1-Oct-18	RC
BI0058	696214	4547306	728.063	44	1-Oct-18	1-Oct-18	RC
600019	030214		120.005		1-001-10	1-0(1-10	nc nc

BI0061	696231.8	4547298	728.459	46	3-Oct-18	3-Oct-18	RC
BI0060	696222	4547303	728.099	47	3-Oct-18	4-Oct-18	RC
BI0062	696242.2	4547293	728.69	55	4-Oct-18	4-Oct-18	RC
BI0063	696286.1	4547272	725.126	44	4-Oct-18	5-Oct-18	RC
BI0064	696296.5	4547267	724.307	40	5-Oct-18	5-Oct-18	RC
BI0065	696304.5	4547263	723.553	40	6-Oct-18	6-Oct-18	RC
BI0066	696184.5	4547304	726.131	42	6-Oct-18	6-Oct-18	RC
BI0067	696194.9	4547299	726.834	42	7-Oct-18	7-Oct-18	RC
BI0068	696204.7	4547294	727.218	43	7-Oct-18	8-Oct-18	RC
BI0069	696215	4547289	727.709	45	8-Oct-18	8-Oct-18	RC
BI0070	696224.3	4547285	728.117	46	9-Oct-18	9-Oct-18	RC
BI0071	696234.5	4547280	728.252	55	9-Oct-18	10-Oct-18	RC
BI0072	696254.7	4547271	726.846	55	10-Oct-18	15-Oct-18	RC
BI0073	696274.1	4547261	724.109	42	15-Oct-18	15-Oct-18	RC
BI0074	696289.7	4547254	722.665	38	16-Oct-18	16-Oct-18	RC
BI0075	696298.9	4547249	721.739	38	16-Oct-18	16-Oct-18	RC
BI0076	696202.1	4547278	726.872	43	16-Oct-18	17-Oct-18	RC
BI0077	696211.6	4547274	727.196	48	17-Oct-18	17-Oct-18	RC
BI0078	696221.9	4547269	727.548	48	17-Oct-18	18-Oct-18	RC
BI0079	696231.4	4547265	727.512	55	18-Oct-18	18-Oct-18	RC
BI0080	696251.5	4547261	726.085	53	22-Oct-18	22-Oct-18	RC
BI0081	696270.6	4547252	723.584	40	22-Oct-18	22-Oct-18	RC
BI0082	696280.2	4547247	722.817	40	23-Oct-18	23-Oct-18	RC
BI0083	696288.5	4547244	722.217	40	23-Oct-18	24-Oct-18	RC
BI0084	696297.3	4547239	721.525	35	24-Oct-18	24-Oct-18	RC
BI0085	696186.8	4547286	726.401	43	24-Oct-18	25-Oct-18	RC
BI0086	696195.3	4547282	726.494	43	25-Oct-18	25-Oct-18	RC
BI0087	696171.4	4547277	724.555	41	26-Oct-18	26-Oct-18	RC
BI0088	696180.7	4547273	725.051	41	26-Oct-18	26-Oct-18	RC
BI0089	696189.8	4547268	725.267	42	27-Oct-18	27-Oct-18	RC
BI0090	696198.9	4547264	725.682	48	27-Oct-18	27-Oct-18	RC
BI0091	696208	4547259	725.841	47	28-Oct-18	28-Oct-18	RC
BI0092	696168.2	4547261	723.524	40	28-Oct-18	28-Oct-18	RC
BI0093	696178.2	4547257	724.02	41	28-Oct-18	29-Oct-18	RC
BI0094	696187.1	4547252	724.212	41	29-Oct-18	29-Oct-18	RC
BI0095	696162.9	4547247	722.569	38	30-Oct-18	30-Oct-18	RC
BI0096	696172.1	4547242	723.049	40	30-Oct-18	30-Oct-18	RC
BI0097	696261	4547256	725.336	53	31-Oct-18	31-Oct-18	RC
BI0098	695982.8	4546577	682.591	35	5-Nov-18	5-Nov-18	RC
BI0099	695981	4546564	682.713	30	6-Nov-18	6-Nov-18	RC
BI0100	695990.4	4546562	683.052	36	6-Nov-18	6-Nov-18	RC
BI0100	695999.3	4546559	683.203	47	7-Nov-18	7-Nov-18	RC
BI0101 BI0102	696009.3	4546556	683.1	50	9-Nov-18	9-Nov-18	RC
BI0103	696019.3	4546554	682.299	60	9-Nov-18	10-Nov-18	RC
BI0104	696005.9	4546542	682.909	45	10-Nov-18	10-Nov-18	RC
BI0105	695978.4	4546548	682.899	40	11-Nov-18	11-Nov-18	RC
BI0106	695996.8	4546528	682.125	40	12-Nov-18	12-Nov-18	RC
BI0107	696006.5	4546526	682.764	40	12-Nov-18	12-Nov-18	RC
BI0108	696016.4	4546523	683.262	40	13-Nov-18	14-Nov-18	RC
BI0109	696027.1	4546520	684.057	40	14-Nov-18	19-Nov-18	RC

BI0110	696014.5	4546569	680.555	40	19-Nov-18	20-Nov-18	RC
BI0111	696005.2	4546576	680.573	45	21-Nov-18	21-Nov-18	RC
BI0112	696027.8	4546552	681.778	38	21-Nov-18	22-Nov-18	RC
BI0113	696301.6	4547370	729.133	43	22-Nov-18	22-Nov-18	RC
BI0114	696247	4547289	728.441	48	23-Nov-18	23-Nov-18	RC
BI0115	696295.6	4547332	728.414	42	23-Nov-18	24-Nov-18	RC
BI0116	696284	4547338	729.317	40	24-Nov-18	25-Nov-18	RC
BI0117	696240.7	4547334	729.509	46	27-Nov-18	28-Nov-18	RC
BI0283	696101.8	4546700	660.415	37	17-Nov-19	18-Jan-19	RC
BI0118	696306.4	4547176	710.613	59	9-Apr-19	9-Apr-19	RC
BI0119	696315.1	4547172	710.835	59	10-Apr-19	11-Apr-19	RC
BI0120	696296.2	4547143	707.861	59	11-Apr-19	11-Apr-19	RC
BI0121	696305.7	4547141	708.122	59	12-Apr-19	12-Apr-19	RC
BI0122	696285.7	4547121	707.015	56	13-Apr-19	13-Apr-19	RC
BI0123	696295.3	4547116	707.236	56	14-Apr-19	14-Apr-19	RC
BI0124	696277.2	4547091	704.224	53	22-Apr-19	22-Apr-19	RC
BI0125	696287	4547088	704.595	53	23-Apr-19	23-Apr-19	RC
BI0126	696264.2	4547064	702.082	50	23-Apr-19	24-Apr-19	RC
BI0127	696274.3	4547060	702.242	50	24-Apr-19	24-Apr-19	RC
BI0128	696251.8	4547037	700.514	48	25-Apr-19	25-Apr-19	RC
BI0129	696260.4	4547033	700.892	48	25-Apr-19	26-Apr-19	RC
BI0130	696244.7	4547006	700.421	48	26-Apr-19	26-Apr-19	RC
BI0131	696253.8	4547002	700.457	48	29-Apr-19	6-May-19	RC
BI0132	696228.3	4546981	700.26	47	6-May-19	6-May-19	RC
BI0133	696237.4	4546977	699.943	47	8-May-19	8-May-19	RC
BI0134	696200.9	4546961	700.41	47	8-May-19	9-May-19	RC
BI0135	696210.5	4546957	700.752	47	9-May-19	9-May-19	RC
BI0135	696219.4	4546952	700.624	47	9-May-19	9-May-19	RC
BI0137	696228.2	4546948	700.004	47	10-May-19	10-May-19	RC
BI0137	696237.1	4546944	700.254	47	13-May-19	13-May-19	RC
BI0139	696193.7	4546931	700.602	48	13-May-19	14-May-19	RC
BI0135	696202.7	4546927	700.487	48	14-May-19	14-May-19	RC
BI0140	696212	4546923	700.259	48	14-May-19	16-May-19	RC
BI0141	696221.3	4546919	700.137	48	16-May-19	16-May-19	RC
BI0142	696230.5	4546915	699.891	48	17-May-19	17-May-19	RC
BI0143	696239.5	4546911	699.914	48	17-May-19	20-May-19	RC
BI0145	696183.3	4546902	700.358	40	20-May-19	21-May-19	RC
BI0146	696071.3	4546587	688.644	37	21-May-19	21-May-19	RC
BI0147	696078.7	4546583	688.851	37	22-May-19	22-May-19	RC
BI0147 BI0148	696087.9	4546579	688.953	37	22-May-19	22-May-19	RC
BI0148 BI0149	696097	4546575	688.655	37	23-May-19	22-10/ay-19 23-May-19	RC
BI0149 BI0150	696105.7	4546570	688.518	37	23-May-19	23-May-19	RC
BI0150	696115	4546564	691.393	37	23-May-19	23-May-19 24-May-19	RC
BI0151 BI0152	696082.7	4546617	693.621	37	24-May-19	24-May-19	RC
BI0152	696091.7	4546617	693.366	37	24-May-19 27-May-19	24-10/ay-19 27-May-19	RC
BI0155	696100.6	4546608	693.588	37	27-May-19 27-May-19		RC
BI0154 BI0155	696110	4546608	693.588	37	27-May-19 28-May-19	27-May-19 28-May-19	RC
BI0155	696110	4546602	691.464 691.198	37			RC
BI0156 BI0157	696128.3		691.363	37	28-May-19 29-May-19	28-May-19	RC
		4546597			-	29-May-19	
BI0158	696081.3	4546649	690.068	37	29-May-19	29-May-19	RC

BI0159	696088.6	4546645	690.175	37	30-May-19	30-May-19	RC
BI0160	696097.5	4546641	690.032	37	, 30-May-19	, 30-May-19	RC
BI0161	696106.5	4546637	690.291	37	, 31-May-19	, 31-May-19	RC
BI0162	696115.7	4546633	690.659	37	, 31-May-19	, 3-Jun-19	RC
BI0163	696124.9	4546628	690.928	37	3-Jun-19	3-Jun-19	RC
BI0164	696134.1	4546624	691.13	37	4-Jun-19	4-Jun-19	RC
BI0165	696143.3	4546620	691.403	37	4-Jun-19	4-Jun-19	RC
BI0166	696098.1	4546678	689.553	37	4-Jun-19	5-Jun-19	RC
BI0167	696105.8	4546674	689.763	37	5-Jun-19	5-Jun-19	RC
BI0168	696114.6	4546670	689.75	37	5-Jun-19	6-Jun-19	RC
BI0169	696123.4	4546666	690.018	37	6-Jun-19	6-Jun-19	RC
BI0170	696132.9	4546661	690	37	10-Jun-19	10-Jun-19	RC
BI0171	696110.8	4546702	689.372	37	11-Jun-19	11-Jun-19	RC
BI0172	696118.6	4546698	689.538	37	11-Jun-19	12-Jun-19	RC
BI0173	696127.3	4546694	689.643	37	12-Jun-19	12-Jun-19	RC
BI0174	696136.8	4546690	689.811	37	12-Jun-19	12-Jun-19	RC
BI0175	696145.4	4546686	689.815	37	13-Jun-19	13-Jun-19	RC
BI0176	696132.9	4546724	689.85	37	13-Jun-19	13-Jun-19	RC
BI0177	696139.1	4546721	689.853	37	14-Jun-19	14-Jun-19	RC
BI0178	696148.2	4546717	689.705	37	14-Jun-19	17-Jun-19	RC
BI0179	696156.8	4546713	689.406	37	17-Jun-19	17-Jun-19	RC
BI0180	696129.7	4546760	689.597	37	17-Jun-19	18-Jun-19	RC
BI0181	696137.5	4546756	689.489	37	18-Jun-19	18-Jun-19	RC
BI0182	696146.2	4546752	689.718	37	18-Jun-19	18-Jun-19	RC
BI0183	696155.3	4546748	690.15	37	19-Jun-19	19-Jun-19	RC
BI0184	696164.8	4546743	690.357	37	19-Jun-19	19-Jun-19	RC
BI0185	696173.8	4546739	689.987	37	20-Jun-19	20-Jun-19	RC
BI0186	696147.2	4546785	689.676	37	20-Jun-19	20-Jun-19	RC
BI0187	696155.1	4546782	689.777	37	21-Jun-19	21-Jun-19	RC
BI0188	696162.7	4546778	689.989	37	21-Jun-19	24-Jun-19	RC
BI0189	696170.4	4546774	689.742	37	24-Jun-19	24-Jun-19	RC
BI0190	696178	4546771	689.707	37	25-Jun-19	25-Jun-19	RC
BI0191	696185.5	4546767	689.67	37	25-Jun-19	26-Jun-19	RC
BI0192	696193.2	4546764	689.676	37	26-Jun-19	26-Jun-19	RC
BI0193	696200.7	4546760	690.063	37	27-Jun-19	27-Jun-19	RC
BI0194	696157.9	4546815	689.862	39	27-Jun-19	27-Jun-19	RC
BI0195	696167.6	4546810	689.556	37	28-Jun-19	28-Jun-19	RC
BI0196	696177.1	4546806	689.564	37	28-Jun-19	1-Jul-19	RC
BI0197	696185.9	4546802	689.518	37	1-Jul-19	1-Jul-19	RC
BI0198	696194.3	4546798	689.287	37	2-Jul-19	2-Jul-19	RC
BI0199	696203.3	4546794	689.594	37	2-Jul-19	2-Jul-19	RC
BI0200	696212.9	4546789	689.886	37	3-Jul-19	3-Jul-19	RC
BI0201	696166.6	4546841	689.968	37	3-Jul-19	4-Jul-19	RC
BI0202	696175.9	4546837	689.713	37	4-Jul-19	4-Jul-19	RC
BI0203	696185.3	4546832	689.692	37	4-Jul-19	5-Jul-19	RC
BI0204	696194.1	4546828	689.797	33	5-Jul-19	5-Jul-19	RC
BI0205	696203	4546824	689.4202	37	8-Jul-19	9-Jul-19	RC
BI0206	696212.7	4546819	689.508	37	9-Jul-19	9-Jul-19	RC
BI0207	696221.3	4546815	689.4265	37	10-Jul-19	10-Jul-19	RC
BI0208	696179.9	4546869	690.295	37	10-Jul-19	10-Jul-19	RC

BI0209	696189.5	4546864	690.335	37	11-Jul-19	11-Jul-19	RC
BI0210	696198.5	4546860	690.4799	37	11-Jul-19	12-Jul-19	RC
BI0211	696207.5	4546856	690.2299	37	12-Jul-19	15-Jul-19	RC
BI0212	696216.7	4546851	690.1499	37	15-Jul-19	16-Jul-19	RC
BI0213	696225.3	4546847	690.7311	37	16-Jul-19	16-Jul-19	RC
BI0214	696192.2	4546898	690.623	37	16-Jul-19	17-Jul-19	RC
BI0215	696201.2	4546894	690.596	37	17-Jul-19	17-Jul-19	RC
BI0216	696210.5	4546890	690.766	37	17-Jul-19	18-Jul-19	RC
BI0217	696219.3	4546886	690.647	37	22-Jul-19	22-Jul-19	RC
BI0218	696228.5	4546881	690.342	37	23-Jul-19	23-Jul-19	RC
BI0219	696238.1	4546877	690.485	37	23-Jul-19	23-Jul-19	RC
BI0220	696016	4546620	669.022	22	25-Jul-19	25-Jul-19	RC
BI0221	696025.7	4546618	668.595	22	26-Jul-19	25-Jul-19	RC
BI0222	696035	4546615	668.951	22	26-Jul-19	26-Jul-19	RC
BI0223	696008.4	4546591	668.429	22	26-Jul-19	29-Jul-19	RC
BI0224	696018	4546589	668.405	22	29-Jul-19	30-Jul-19	RC
BI0225	696027.5	4546586	668.151	22	30-Jul-19	30-Jul-19	RC
BI0226	696023.8	4546649	669.55	22	30-Jul-19	30-Jul-19	RC
BI0227	696033.8	4546646	669.401	22	31-Jul-19	31-Jul-19	RC
BI0228	696043.2	4546644	668.848	22	31-Jul-19	31-Jul-19	RC
BI0229	696020	4546635	669.394	22	1-Aug-19	1-Aug-19	RC
BI0230	696029.6	4546632	669.258	22	1-Aug-19	1-Aug-19	RC
BI0231	696050.8	4546642	668.622	22	1-Aug-19	1-Aug-19	RC
BD001	696228.4	4547290	709.487	12	9-Aug-19	13-Aug-19	DDH
BD002	696236.2	4547285	709.156	12	13-Aug-19	14-Aug-19	DDH
BD003	696219.5	4547277	709.496	12.1	14-Aug-19	15-Aug-19	DDH
BD004	696227.7	4547273	709.213	12.05	15-Aug-19	19-Aug-19	DDH
BD005	696209.6	4547265	709.643	12.15	20-Aug-19	20-Aug-19	DDH
BD006	696218	4547261	709.244	12.1	20-Aug-19	21-Aug-19	DDH
BD007	696263.2	4547300	709.534	12.1	21-Aug-19	21-Aug-19	DDH
BD008	696272.2	4547295	709.793	12.15	21-Aug-19	22-Aug-19	DDH
BD009	696280.4	4547291	709.739	12.25	22-Aug-19	23-Aug-19	DDH
BD010	696289.7	4547287	709.33	12.1	26-Aug-19	26-Aug-19	DDH
BD011	696269.7	4547313	709.696	12.1	26-Aug-19	26-Aug-19	DDH
BD012	696277.4	4547310	709.532	12.15	27-Aug-19	27-Aug-19	DDH
BD013	696285.8	4547306	709.738	12.45	27-Aug-19	28-Aug-19	DDH
BD014	696294.7	4547302	709.988	12.1	28-Aug-19	28-Aug-19	DDH
BD015	696276.2	4547328	709.836	12	28-Aug-19	28-Aug-19	DDH
BD016	696284.6	4547324	709.818	12.1	29-Aug-19	29-Aug-19	DDH
BD017	696292.3	4547320	709.653	12.15	29-Aug-19	29-Aug-19	DDH
BD018	696300.9	4547316	710.255	12.2	30-Aug-19	2-Sep-19	DDH
BD019	696286.5	4547339	709.519	12.2	2-Sep-19	2-Sep-19	DDH
BD020	696293.8	4547336	709.742	12.2	3-Sep-19	3-Sep-19	DDH
BD021	696300.9	4547332	709.924	12.1	3-Sep-19	3-Sep-19	DDH
BD022	696309.4	4547328	709.87	12.3	4-Sep-19	4-Sep-19	DDH
BD023	696295.4	4547350	709.856	12	4-Sep-19	4-Sep-19	DDH
BD024	696303.2	4547347	709.899	12.3	4-Sep-19	5-Sep-19	DDH
BD025	696311.5	4547342	709.991	12.1	5-Sep-19	5-Sep-19	DDH
			710.357	12.3	5-Sep-19	5-Sep-19	
BD026	696319.8	4547338	110.231	12.5	2-260-13	7-260-13	DDH

		1		1			1
BI0233	696011.7	4546787	691.288	47	17-Sep-19	18-Sep-19	RC
BI0234	696002.3	4546790	691.225	47	18-Sep-19	18-Sep-19	RC
BI0235	695992.1	4546793	691.032	47	18-Sep-19	18-Sep-19	RC
BI0236	696027.2	4546798	691.636	41	19-Sep-19	19-Sep-19	RC
BI0237	696017.2	4546800	691.498	47	19-Sep-19	19-Sep-19	RC
BI0238	696007.6	4546803	690.918	47	20-Sep-19	20-Sep-19	RC
BD027	696285	4547230	710.514	135.5	16-Sep-19	23-Sep-19	DDH
BI0239	695997.8	4546806	690.871	47	23-Sep-19	24-Sep-19	RC
BI0240	695988.1	4546808	690.742	47	25-Sep-19	25-Sep-19	RC
BI0241	696089.4	4547155	710.931	71	26-Sep-19	26-Sep-19	RC
BI0242	696079.8	4547157	711.02	71	27-Sep-19	27-Sep-19	RC
BI0243	696070	4547160	710.469	71	30-Sep-19	30-Sep-19	RC
BI0244	696060.2	4547162	710.306	71	1-Oct-19	1-Oct-19	RC
BI0245	696087.4	4547124	710.593	71	2-Oct-19	2-Oct-19	RC
BI0246	696077.6	4547127	709.823	49	2-Oct-19	3-Oct-19	RC
BI0247	696067.4	4547130	709.077	71	4-Oct-19	4-Oct-19	RC
BI0248	696058.4	4547132	708.313	71	7-Oct-19	7-Oct-19	RC
BI0249	696085.4	4547094	709.905	70	8-Oct-19	8-Oct-19	RC
BI0250	696075.5	4547096	708.788	69	8-Oct-19	9-Oct-19	RC
BI0251	696065.8	4547099	707.487	68	9-Oct-19	9-Oct-19	RC
BI0252	696056.3	4547101	706.299	68	10-Oct-19	10-Oct-19	RC
BI0253	696081.4	4547064	709.258	70	11-Oct-19	11-Oct-19	RC
BI0254	696071.6	4547066	708.366	68	14-Oct-19	17-Oct-19	RC
BI0255	696062.3	4547069	707.639	67	17-Oct-19	17-Oct-19	RC
BI0256	696052.7	4547071	707.039	67	17-Oct-19	18-Oct-19	RC
BI0257	696077.9	4547066	708.625	70	18-Oct-19	22-Oct-19	RC
BI0258	696085.9	4547095	709.91	80	22-Oct-19	23-Oct-19	RC
BI0259	696074.1	4547035	709.757	70	23-Oct-19	24-Oct-19	RC
BI0260	696065.8	4547037	708.923	70	24-Oct-19	24-Oct-19	RC
BI0261	696056.3	4547039	707.456	66	25-Oct-19	25-Oct-19	RC
BI0262	696046.7	4547042	706.557	66	28-Oct-19	28-Oct-19	RC
BI0263	696095.5	4547107	710.113	72	29-Oct-19	29-Oct-19	RC
BI0264	696083.9	4547079	709.519	27	30-Oct-19	29-Oct-19	RC
BI0265	696058.1	4546949	689.597	47	30-Oct-19	30-Oct-19	RC
BI0266	696047.3	4546952	689.76	47	30-Oct-19	31-Oct-19	RC
BI0267	696037.1	4546951	689.951	47	31-Oct-19	31-Oct-19	RC
BI0268	696058.5	4546915	689.824	38	4-Nov-19	4-Nov-19	RC
BI0269	696057.3	4546915	689.738	47	5-Nov-19	5-Nov-19	RC
BI0209	696046.6	4546918	689.679	47	6-Nov-19	6-Nov-19	RC
BI0270	696036.9	4546920	689.844	47	6-Nov-19	6-Nov-19	RC
BI0271 BI0272	696027.3	4546923	689.776	47	7-Nov-19	7-Nov-19	RC
BI0272 BI0273	696017.6	4546925	689.894	47	7-Nov-19	8-Nov-19	RC
BI0273	696051.1	4546885	690.941	47	8-Nov-19	11-Nov-19	RC
BI0274 BI0275	696050.2	4546886	690.963	40	11-Nov-19	11-Nov-19	RC
BI0275	696040.6	4546888	691.139	47	12-Nov-19	12-Nov-19	RC
BI0278	696031	4546891	691.139 690.752	47	12-Nov-19 12-Nov-19	12-NOV-19 13-Nov-19	RC
BI0277 BI0278	696050.3	4546686	655.824	47	12-NOV-19 13-Nov-19	13-Nov-19 13-Nov-19	RC
BI0279	696046.3	4546687	655.865	49	14-Nov-19	14-Nov-19	RC
BI0280	696036.6	4546690	655.985	43	15-Nov-19	15-Nov-19	RC
BI0281	696027	4546692	655.911	44	16-Nov-19	16-Nov-19	RC

BI0282	696111.2	4546698	660.82	37	17-Nov-19	17-Nov-19	RC
BI0284	696092.1	4546703	659.448	48	18-Nov-19	18-Nov-19	RC
BI0285	696082.5	4546705	658.304	48	20-Nov-19	20-Nov-19	RC
BI0286	696073	4546708	657.515	38	20-Nov-19	21-Nov-19	RC
BI0287	696053.7	4546713	656.768	33	21-Nov-19	21-Nov-19	RC
BI0288	696063.2	4546710	656.882	35	21-Nov-19	22-Nov-19	RC
BI0289	696060.7	4546668	655.141	72	22-Nov-19	26-Nov-19	RC
BI0290	696062.6	4546732	656.209	33	27-Nov-19	27-Nov-19	RC
BI0291	696061.6	4546733	656.256	38	27-Nov-19	27-Nov-19	RC
BI0292	696072.2	4546730	656.264	34	28-Nov-19	29-Nov-19	RC
BI0293	696081.6	4546727	656.721	35	29-Nov-19	29-Nov-19	RC
BI0294	696091	4546725	656.928	36	30-Nov-19	30-Nov-19	RC
BI0295	696060.2	4546746	655.908	35	1-Dec-19	1-Dec-19	RC
BI0296	696069.9	4546743	655.676	29	2-Dec-19	2-Dec-19	RC
BI0297	696079.4	4546740	655.817	29	3-Dec-19	3-Dec-19	RC
BI0298	696089	4546738	656.21	29	10-Dec-19	10-Dec-19	RC
BI0299	696093.5	4546752	656.199	43	11-Dec-19	11-Dec-19	RC
BI0300	696102.7	4546750	655.776	54	11-Dec-19	12-Dec-19	RC
BI0301	696064.2	4546760	655.631	30	12-Dec-19	13-Dec-19	RC
BI0302	696065.4	4546760	655.617	38	13-Dec-19	13-Dec-19	RC
BI0303	696073.7	4546758	655.584	32	13-Dec-19	14-Dec-19	RC
BI0304	696083.5	4546755	655.638	34	14-Dec-19	15-Dec-19	RC
BI0305	696103.1	4546765	656.258	55	15-Dec-19	16-Dec-19	RC
BI0306	696112.7	4546762	655.835	67	17-Dec-19	17-Dec-19	RC
BI0307	696121.8	4546760	656.176	67	7-Jan-20	8-Jan-20	RC
BI0308	696132.3	4546757	656.49	67	8-Jan-20	9-Jan-20	RC
BI0309	696124.4	4546775	656.013	66	9-Jan-20	10-Jan-20	RC
BI0300	696121	4546695	660.815	40	13-Jan-20	13-Jan-20	RC
BI0310	696105.2	4546780	655.789	57	13-Jan-19	14-Jan-20	RC
BI0312	696036.7	4546827	680.109	35	14-Jan-20	15-Jan-20	RC
BI0313	696036.8	4546827	680.064	35	15-Jan-20	16-Jan-20	RC
BI0313	696027.1	4546830	680.091	36	16-Jan-20	16-Jan-20	RC
BI0314 BI0315	696017.4	4546833	680.024	36	16-Jan-20	17-Jan-20	RC
BI0315	696007.9	4546835	680.431	36	17-Jan-20	20-Jan-20	RC
BI0310 BI0317	696058.6	4546855	690.117	56	17-Jan-20 17-Jan-20	20-Jan-20 22-Jan-20	RC
					22-Jan-20		
BI0318 BI0319	696057.4	4546977	690.199	47 47		22-Jan-20	RC
BI0319	696048.6	4546979	690.263		22-Jan-20	23-Jan-20	RC
	696038.8	4546982	690.49	47	23-Jan-20	24-Jan-20	RC
BI0321	696029.4	4546984	690.419	47	24-Jan-20	27-Jan-20	RC
BI0322	696042.6	4546857	680.16	40	27-Jan-20	28-Jan-20	RC
BI0323	696041.6	4546857	680.198	36	28-Jan-20	28-Jan-20	RC
BI0324	696033.2	4546859	679.808	38	28-Jan-20	29-Jan-20	RC
BI0325	696023.1	4546862	680.056	36	29-Jan-20	30-Jan-20	RC
BI0326	696013.7	4546864	679.905	36	29-Jan-20	30-Jan-20	RC
BI0327	696004.1	4546867	679.773	36	29-Jan-20	31-Jan-20	RC
BI0328	695994.1	4546870	679.844	56	31-Jan-20	3-Feb-20	RC
BI0343	696146	4546816	654.749	88	3-Mar-20	3-Feb-20	RC
BI0329	696021.5	4546893	679.936	36	3-Feb-20	4-Feb-20	RC
BI0330	696016	4546895	679.99	58	4-Feb-20	5-Feb-20	RC
BI0344	696155.8	4546813	654.524	88	4-Mar-20	5-Feb-20	RC

BI0332	695998.1	4546837	679.433	36	5-Feb-20	6-Feb-20	RC
BI0331	695988.6	4546840	680.157	58	6-Feb-20	7-Feb-20	RC
BI0333	696114.6	4546778	656.058	77	7-Feb-20	10-Feb-20	RC
BI0334	696120.7	4546792	655.386	80	10-Feb-20	12-Feb-20	RC
BI0336	696111	4546795	655.398	20	17-Feb-20	17-Feb-20	RC
BI0335	696092.9	4546766	656.513	52	17-Feb-20	18-Feb-20	RC
BI0337	696127.7	4546805	654.881	21	18-Feb-20	18-Feb-20	RC
BI0338	696137.8	4546802	655.294	85	18-Feb-20	19-Feb-20	RC
BI0339	696147.8	4546802	654.73	88	19-Feb-20	20-Feb-20	RC
BI0340	696118	4546807	654.938	18	24-Feb-20	25-Feb-20	RC
BI0341	696157.7	4546799	654.453	88	25-Feb-20	27-Feb-20	RC
BI0342	696136.2	4546818	654.752	88	28-Feb-20	2-Mar-20	RC
BI0345	696143.6	4546832	654.194	88	6-Mar-20	7-Mar-20	RC
BI0346	696153.2	4546829	653.846	93	7-Mar-20	8-Mar-20	RC
BI0347	696163.1	4546827	653.799	95	8-Mar-20	10-Mar-20	RC
BI0348	696146.2	4546850	654.295	82	10-Mar-20	11-Mar-20	RC
BI0349	696091.6	4546731	655.195	88	16-Mar-20	17-Mar-20	RC
BI0350	696101.6	4546729	655.31	88	19-Mar-20	19-Mar-20	RC
BI0351	696110.1	4546723	655.212	88	21-Mar-20	20-Mar-20	RC
BI0352	696155.6	4546847	654.287	86	22-Mar-20	22-Mar-20	RC
BI0353	696165.6	4546844	654.712	92	22-Mar-20	24-Mar-20	RC
BI0354	696151	4546736	660.691	36	24-Mar-20	25-Mar-20	RC
BI0355	696158.7	4546732	660.952	36	25-Mar-20	25-Mar-20	RC
BI0356	696110.5	4546793	655.487	77	13-Apr-20	16-Apr-20	RC
BI0357	696107.6	4546810	654.951	68	16-Apr-20	21-Apr-20	RC
BI0358	696108.7	4546810	655.108	75	21-Apr-20	23-Apr-20	RC
BI0359	696083.6	4546770	656.133	53	23-Apr-20	24-Apr-20	RC
BI0360	696084.5	4546770	656.114	20	24-Apr-20	25-Apr-20	RC
BI0361	696095.2	4546783	655.477	33	25-Apr-20	25-Apr-20	RC
BI0362	696096.3	4546782	655.514	59	26-Apr-20	26-Apr-20	RC
BI0363	696101.1	4546796	655.45	81	26-Apr-20	28-Apr-20	RC
BI0364	696102.1	4546796	655.535	67	28-Apr-20	29-Apr-20	RC
BI0365	696117.9	4546807	655	31	29-Apr-20	4-May-20	RC
BI0366	696127.7	4546804	654.88	16	4-May-20	6-May-20	RC
BI0367	696117.8	4546826	654.75	28	6-May-20	8-May-20	RC
BI0368	696133.8	4546835	654.995	15	8-May-20	9-May-20	RC
BI0369	696053.7	4546643	647.216	57	9-May-20	10-May-20	RC
BI0309	696063.8	4546639	647.348	57	10-May-20	10-May-20	RC
					-	10-10/10y-20 11-May-20	
BI0371	696072.7	4546635	647.381	57	10-May-20	-	RC
BI0372 BI0373	696054.9 696064.1	4546657 4546654	647.322 647.373	57 57	11-May-20 12-May-20	12-May-20 13-May-20	RC RC
		4546654			-	-	
BI0374	696073.8		647.98	57	13-May-20	13-May-20	RC
BI0375	696101.7	4547389	723.537	90	26-May-20	27-May-20	RC
BI0376	696072	4547349	722.362	75	28-May-20	28-May-20	RC
BI0377	696115.1	4547444	723.903	120	29-May-20	31-May-20	RC
BI0378	696133.2	4547477	721.404	51	1-Jun-20	2-Jun-20	RC
BD028	696266.9	4546744	694.717	370	6-May-21	18-May-21	DDH
BD029	696273.8	4546807	695.077	365.2	19-May-21	28-May-21	DDH
BD030	696287.2	4546953	701.937	347	31-May-21	8-Jun-21	DDH
BD031	696210.7	4546668	691.363	281	8-Jun-21	16-Jun-21	DDH

BD032	696180.4	4546571	689.131	299	28-Jan-22	8-Feb-22	DDH
BD033	696196.2	4546606	689.638	322.7	9-Feb-22	17-Feb-22	DDH
BD034	696363.2	4547203	711.129	283.9	18-Feb-22	25-Feb-22	DDH
BD035	696347.3	4547158	710.865	251	28-Feb-22	7-Mar-22	DDH
BD036	696347.8	4547158	711.023	300	7-Mar-22	15-Mar-22	DDH
BD037	696381.3	4547089	704.772	329.1	15-Mar-22	23-Mar-22	DDH
BD038	696376.3	4547041	702.573	330	25-Mar-22	30-Mar-22	DDH
BD039	696374.6	4547254	712.8	275	30-Mar-22	4-Apr-22	DDH
BD040	696152.9	4546513	687.837	260	5-Apr-22	9-Apr-22	DDH
BD041	696220.9	4546603	691.974	440.1	12-May-22	26-May-22	DDH
BD042	696273.1	4546740	694.729	450	27-May-22	8-Jun-22	DDH
BD043	696325.2	4546791	695.409	474.5	9-Jun-22	23-Jun-22	DDH
BD044	696401.3	4546833	691.672	521	24-Jun-22	14-Jul-22	DDH
BD045	696427.4	4547512	712.664	293.9	19-Jul-22	31-Jul-22	DDH
BD046	696415.4	4547561	715.455	344	1-Aug-22	23-Sep-22	DDH
BD047	696438.8	4547618	719.573	245	23-Sep-22	6-Oct-22	DDH
BD048	696072.9	4546393	686.956	224	7-Oct-22	19-Oct-22	DDH
BD049	696506.1	4547441	705.869	380	20-Oct-22	7-Nov-22	DDH
BD050	696436.8	4547351	708.828	329	8-Nov-22	21-Nov-22	DDH
BD051	696431.6	4547291	707.514	329	23-Nov-22	7-Dec-22	DDH
BD052	696410.2	4547198	706.335	361.9	31-Jan-23	20-Feb-23	DDH
BD053	696296.9	4546801	693.475	380	21-Feb-23	10-Mar-23	DDH

APPENDIX C

Minimum Composite Width : 1.00		DDH	RC	All
Maximum Internal Dilution : 2.00	TOTAL m	2229.1	2665	4894.1
Cutoff Criteria> Field : wo3_pct Minimum Grade : 0.05	0 Intervals	1023	836	1859
	grade (%WO3)	0.452	0.326	0.383
	1115 interceps of 1m length			

1387 interceps of less than 2m length

Thickness calculation assuming veins vertical dipping

Hole Id	Easting (m)	Northing (m)		Depth (m)	Azimuth (º)	Dip (⁰)	From (m)	To (m)		True Tickness (m)	WO₃ (%
BAR01	696200.653	4547288.57	726.932	161.65	272	-44	80.4	81.4	1	0.87	0.100
							115.65	116.65	1	0.87	0.609
							141.6	144.6	3	2.60	0.051
BAR02	696313.03	4547289.14	722.43	321	281	-45.5	2.1	3.15	1.05	0.91	0.050
							9.75	12.75	3	2.60	0.103
							37.1	38.1	1	0.87	0.227
							43	44	1	0.87	0.164
							53	54	1	0.87	0.820
							57	58	1	0.87	0.227
							66	69	3	2.60	0.164
							79	82	3	2.60	0.397
							100	102	2	1.73	0.127
							109	111	2	1.73	0.410
							117	118	1	0.87	0.085
							125	129	4	3.46	0.473
						incl.	125	126	1	0.87	1.286
							131	132	1	0.87	0.112
							159	160	1	0.87	0.076
							163	164	1	0.87	0.391
							185	186	1	0.87	0.504
							203	204	1	0.87	0.089
							232	233	1	0.87	0.214
							237	238	1	0.87	0.058
							244	245	1	0.87	0.088
							247	250	3	2.60	0.127
							253	256	3	2.60	0.847
							275	276	1	0.87	0.479
							280	281	1	0.87	0.060
							283	284	1	0.87	0.088
							295	298	3	2.60	0.628
						incl.	295	296	1	0.87	1.816
							301	302	1	0.87	0.082
BAR03	696216.52	4547484.79	727.22	161.05	277	-53.5	23.15	24.4	1.25	1.08	0.095
							36.45	37.45	1	0.87	0.232
							42.3	43.3	1	0.87	0.325
							101.5	109.2	7.7	6.67	0.503
						incl.	101.9	102.9	1	0.87	2.421
							144.3	145.4	1.1	0.95	0.130
BAR04	696223.72	4547689.02	731.26	160	279	-57	31.95	35.7	3.75	3.25	0.250
							110.35	111.7	1.35	1.17	0.317
							122	122.9	0.9	0.78	1.576

							142.5	143.05	0.55	0.48	4.477
BAR05	696262.58	4547477.72	730.02	161.85	278	-39	34.8	36	1.2	1.04	0.110
							38.9	39.9	1	0.87	0.072
							133.7	135.35	1.65	1.43	0.373
BAR06	696328.5	4547476.2	726.16	280.5	274	-54	65.75	69	3.25	2.81	0.088
							160.2	161.4	1.2	1.04	0.143
							181.6	182.75	1.15	1.00	0.556
							239	240	1	0.87	0.380
							245	246	1	0.87	0.668
							253	254	1	0.87	0.071
							259	260	1	0.87	0.085
							278	280	2	1.73	0.221
BAR07	696294.07	4547685.06	729.91	241.85	291	-56		No	significant inte	ersections	
BAR08	695277.72	4546825.05	705	139.5	280	-44	33.45	34.5	1.05	0.91	0.401
							36.55	38.6	2.05	1.78	0.113
							50.3	51.4	1.1	0.95	0.129
							96.65	98.8	2.15	1.86	1.170
						incl.	97.9	98.8	0.9	0.78	2.711
							107.45	109.45	2	1.73	0.439
BAR09	696218.319	4547432.891	727.828	150	277	-54	32	33	1	0.87	0.164
							88	89	1	0.87	0.076
							101	102	1	0.87	0.071
							108	109	1	0.87	0.366
							111	112	1	0.87	0.076
							119	121	2	1.73	3.040
						incl.	120	121	1	0.87	5.385
							123	124	1	0.87	0.113
							138	139	1	0.87	0.189
BAR10	696220.701	4547535.035	727.524	150.8	280	-55	35	36	1	0.87	0.101
2,	0002200.02	10170001000	, _,	20010	200		58	59	1	0.87	0.189
							125	127	2	1.73	2.781
						incl.	125	126	1	0.87	5.208
						inci.	143	144	1	0.87	0.063
BAR11	696214.366	4547587.394	728.007	150.3	275	-52.5	78	79	1	0.87	0.052
DANII	090214.900	4347387.334	728.007	150.5	275	-52.5	114	115	1	0.87	0.315
BAR12	696228.322	4547644.664	730.037	150	277	-54	26	27	1	0.87	0.063
DANIZ	030220.322	-0+4.004	/ 50.05/	120	211	-34	20 47	48	1	0.87	1.236
							47 70	48 71	1	0.87	0.240
							128	130	2	1.73	1.589
							128	130	2	0.87	0.177
BAR13	696235.113	4547735.483	733.323	157.5	283	-54	130	137	2	1.73	3.815
DARIS	090255.113	4547755.485	133.323	157.5	205	-24	123	125	2	0.87	0.088
BAR14	696246.86	4547795.626	734.357	150.1	288	-57	132		significant int		0.000
				150.1		-57	122		-		0.404
BAR15	696251.346	4547833.679	732.192	210.5	282 279	-55 -54	122 43	124	2	1.73	0.404
BAR16	696321.617	4547958.469	726.103	210.5	279	-54		44		0.87	0.151
							65	66	1	0.87	0.063
							91	92	1	0.87	1.375
							185	186	1	0.87	0.303
							202	206	4	3.46	0.653
1						incl.	205	206	1	0.87	1.879

BAR17	696266.807	4547874.701	728.802	150.45	280	-54	125	127	2	1.73	0.870
							131	133	2	1.73	0.183
BAR18	696329.201	4547818.908	733.043	290.2	273	-55	91	92	1	0.87	0.643
							254	255	1	0.87	0.303
							287	288	1	0.87	0.088
BAR19	696284.415	4547562.051	728.605	285.45	279	-54	13	14	1	0.87	0.113
							96	104	8	6.93	0.286
						incl.	96	97	1	0.87	1.387
							121	124	3	2.60	0.086
							129	130	1	0.87	0.088
							161	162	1	0.87	0.252
							184	185	1	0.87	0.593
							221	223	2	1.73	0.158
							247	248	1	0.87	0.113
							255	256	1	0.87	0.189
							268	271	3	2.60	0.355
BAR20	696149.02	4546681.782	697.544	213.9	283	-54	79	80	1	0.87	0.315
							97	98	1	0.87	0.113
							127	128	1	0.87	0.265
							137	140	3	2.60	1.016
						incl.	138	139	1	0.87	1.840
BAR21	696220.097	4547388.544	726.509	172.2	286	-54	70	71	1	0.87	0.479
							98	99	1	0.87	0.101
							101	102	1	0.87	0.076
							113	114	1	0.87	0.063
							117	118	1	0.87	0.088
							122	126	4	3.46	0.168
							129	130	1	0.87	1.602
							133.5	134.5	1	0.87	0.202
							144	145	1	0.87	0.088
							153	154	1	0.87	0.088
BAR22	696215.608	4547336.242	726.899	181.2	282	-54	10	21	11	9.53	0.068
							30	31	1	0.87	0.214
							35	36	1	0.87	0.567
							71	72	1	0.87	0.063
							79	80	1	0.87	0.126
							100	101	1	0.87	0.378
							110	111	1	0.87	0.643
							118	119	1	0.87	0.151
							132	138	6	5.20	0.145
							152	153	1	0.87	0.139
							156	157	1	0.87	0.050
							166	168	2	1.73	0.328
							170	171	1	0.87	0.113
							180	181.2	1.2	1.04	0.126
BAR23	696173.529	4547234.155	722.729	160	284	-58	22	23	1	0.87	0.353
							68	69	1	0.87	0.065
							71	72	1	0.87	0.068
							77	78	1	0.87	0.391
							87	91	4	3.46	0.088

BA226 65005.719 4547154.33 713.101 153 101 -43 99 0.025 BA224 65005.719 4547154.33 713.101 153 101 -43 59 60 -6 7.1 4 0.47 0.005 BA224 65005.719 4547154.33 713.101 153 101 -43 59 60 1 0.47 0.031 BA224 65005.719 4547154.33 713.101 153 101 -43 59 60 1 0.47 0.053 BA226 696051.201 4547154.33 713.101 151.8 7 -29 61 0.47 0.053 BA226 696051.201 4547098.439 763.897 151.8 7 -29 61 0.47 0.037 BA226 696051.201 4547098.439 712.164 92 283 -48 1 0.47 0.075 BA226 696051.269 4546818.841 711.774 295.2 283 <th></th>												
BA226 696053.7/9 4547154.33 713.101 153 101 -63 59 60 1 0.07 0.032 BA224 696053.7/9 4547154.33 713.101 153 101 -63 59 60 1 0.07 0.061 BA224 696053.7/9 4547154.33 713.101 153 101 -63 59 60 1 0.07 0.164 BA226 696051.291 4547096.459 705.897 151.8 97 -53 63 1 0.07 0.055 BA226 696051.291 4547096.459 705.897 151.8 97 -59 63 4 0.07 1.007 BA226 696051.291 4547096.459 705.897 151.8 97 -50 63 1 0.07 1.007 BA226 696051.291 4546919.34 712.164 92 283 -48 51 1 0.07 BA226 696223.69 4546919.34 712.164								109	110	1	0.87	0.065
BAR26 696031.291 4547154.33 713.101 153 101 4.53 3.9 6.0 1.0 0.87 0.0340 BAR24 656063.719 4547154.33 713.101 153 101 4.53 3.9 6.0 1.51 1 0.87 0.1184 BAR25 65605.1291 4547154.33 713.101 153 101 4.53 3.9 6.0 1 0.87 0.1184 BAR25 65605.1291 4547056.459 705.897 151.8 97 9.9 61 62 1 0.67 0.030 BAR25 65605.1291 4547056.459 705.897 151.8 97 9.9 61 62 1 0.67 0.030 BAR26 69622.586 4546919.34 712.164 92 283 -48 51 52 1 0.67 0.230 BAR26665 696225.892 4548384.841 711.774 295.2 285 33 108 112 4 346								115	116	1	0.87	0.189
BAR24 696051.719 4547154.33 713.101 153 101 6.3 59 60 1 0.87 0.161 BAR24 696051.719 4547154.33 713.101 153 101 6.3 59 60 1 0.87 0.164 BAR24 696051.291 4547154.33 713.101 153 101 6.3 59 60 1 0.87 0.164 BAR25 696051.291 4547056.459 705.897 151.8 97 59 61 6.2 1 0.67 0.38 1 0.67 13.301 0.37 0.380 BAR26 69651.291 4547956.459 705.897 151.8 97 59 61 62 1 0.67 13.30 BAR26 696523.86 4548915.34 712.164 92 28 48 51 52 1 0.87 0.330 BAR26 696523.692 454684.541 711.774 295.2 28 53 108								118	119	1	0.87	0.088
BAR26 69663.719 4547154.33 713.101 153 101 -63 59 60 1 0.87 5.087 BAR24 69663.719 4547154.33 713.101 153 101 -63 50 60 1 0.87 0.184 67 71 4 3.46 1.509 101 -63 68 1 0.87 0.055 8AR25 696051.291 4547096.459 705.897 151.8 97 -90 61 62 1 0.87 0.055 93 96 3 2.60 1.412 121 122 1 0.87 0.380 121 122 1 0.87 0.380 121 1.21 1.22 1 0.87 0.227 123 131 2 1.77 0.272 283 -48 13 1 0.87 0.227 130 14 1 0.87 0.227 63 13 0.81 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>125</td> <td>126</td> <td>1</td> <td>0.87</td> <td>0.252</td>								125	126	1	0.87	0.252
BAR24 696063.719 4547154.33 713.101 153 101 63 59 60 1 0.87 0.164 BAR24 696053.719 4547154.33 713.101 153 101 63 59 60 1 0.87 0.159 BAR25 696051.291 4547096.459 713.18 97 -59 61 62 1 0.87 0.050 BAR25 696051.291 4547096.459 705.897 151.8 97 -59 61 62 1 0.87 0.350 BAR26 696051.291 4547096.459 705.897 151.8 97 -59 61 62 1 0.87 0.350 BAR26 6960523.86 4546919.34 712.164 52 283 48 51 52 1 0.87 0.257 BAR26 696253.892 4546919.34 712.164 52 283 48 51 52 1 0.87 0.257 16 62								131	132	1	0.87	0.340
Incl. 150 151 1 0.87 50.87 BA824 69008.7.19 4547154.33 73.101 133 101 63 59 60 1 0.87 0.164 BA824 69008.7.19 4547154.33 73.101 133 101 67 68 1 0.87 57.33 BA825 696051.291 4547056.459 705.897 151.8 97 -9 61 62 1 0.87 0.350 BA825 696051.291 4547056.459 705.897 151.8 97 -99 61 62 1 0.87 0.380 120 121 122 1 0.87 0.380 121 123 0.87 0.287 120 131 2.2 1.78 9.087 1 0.87 0.287 121 122 13.2 1 0.87 0.287 16 66 1 0.87 0.287 121 122.173 0.126								141	142	1	0.87	0.081
Incl. 150 151 1 0.87 50.87 BA824 69008.7.19 4547154.33 73.101 133 101 63 59 60 1 0.87 0.164 BA824 69008.7.19 4547154.33 73.101 133 101 67 68 1 0.87 57.33 BA825 696051.291 4547056.459 705.897 151.8 97 -9 61 62 1 0.87 0.350 BA825 696051.291 4547056.459 705.897 151.8 97 -99 61 62 1 0.87 0.380 120 121 122 1 0.87 0.380 121 123 0.87 0.287 120 131 2.2 1.78 9.087 1 0.87 0.287 121 122 13.2 1 0.87 0.287 16 66 1 0.87 0.287 121 122.173 0.126								150	152	2	1.73	2.589
$ \begin{bmatrix} 67 & 71 & 4 & 3.46 & 1559 \\ 1 & 0.87 & 5.713 \\ 83 & 84 & 1 & 0.87 & 0.050 \\ 83 & 96 & 1 & 0.87 & 0.051 \\ 93 & 96 & 3 & 2.60 & 1.432 \\ 164 & 94 & 95 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 121 & 122 & 1 & 0.87 & 0.075 \\ 120 & 131 & 2 & 1.73 & 0.075 \\ 130 & 141 & 1 & 0.87 & 0.205 \\ 140 & 141 & 1 & 0.87 & 0.205 \\ 140 & 141 & 1 & 0.87 & 0.057 \\ 140 & 151 & 2 & 1.73 & 0.129 \\ 140 & 151 & 2 & 1.73 & 0.129 \\ 140 & 151 & 2 & 1.73 & 0.129 \\ 140 & 151 & 2 & 1.73 & 0.129 \\ 140 & 151 & 2 & 1.73 & 0.129 \\ 141 & 151 & 14 & 0.87 & 0.430 \\ 141 & 0.87 & 0.436 & 0.352 \\ 141 & 0.87 & 0.436 & 0.352 \\ 141 & 0.87 & 0.307 & 0.232 \\ 141 & 0.87 & 0.307 & 0.374 \\ 141 & 0.87 & 0.307 & 0.374 \\$							incl.	150	151		0.87	5.057
BAR25 696(51.391 4547(96,459 705,897 151.8 97 -9 61 62 1 0.87 0.055 BAR25 696(51.391 4547(96,459 705,897 151.8 97 -9 61 62 1 0.87 0.055 BAR26 696(51.391 4547(96,459 705,897 151.8 97 -9 61 62 1 0.87 0.3380 121 122 1 0.87 0.380 1.142 1 0.87 0.290 123 123 1.17 0.87 0.290 1.31 2 1.03 0.075 129 131 2 1.03 0.075 1 0.87 0.237 120 0.87 0.93 0.66 1 0.87 0.237 131 131 131 1.13 0.87 0.237 0.237 131 131 1.13 1.13 1.13 0.37 0.237 131 <td< td=""><td>BAR24</td><td>696063.719</td><td>4547154.33</td><td>713.101</td><td>153</td><td>101</td><td>-63</td><td>59</td><td>60</td><td>1</td><td>0.87</td><td>0.164</td></td<>	BAR24	696063.719	4547154.33	713.101	153	101	-63	59	60	1	0.87	0.164
incl. 67 68 1 0.87 5.713 BAR25 696051.291 4547096.459 705.897 151.8 97 -59 61 62 1 0.67 0.055 BAR25 696051.291 4547096.459 705.897 151.8 97 -59 61 62 1 0.67 0.055 incl. 94 95 1 0.67 0.330 0.075 1.212 1.0 6.87 0.330 129 131 2 1.73 0.075 1.0 6.87 0.0290 BAR26 696232.86 4546919.34 712.164 92 283 -48 51 52 1 0.67 0.290 BAR26 696232.692 4546884.841 711.774 295.2 285 -53 108 11 0.87 0.2346 incl. 138 146 1 0.87 0.2346 1.0 6.87 0.956 incl. 148 144 1 0.67 0.956 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td>										4		
BAR25 696051 291 4547096.459 705.897 151.8 97 -53 64 62 1 087 0050 BAR25 696051 291 4547096.459 705.897 151.8 97 -59 61 62 1 087 330 BAR26 696232.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.280 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.287 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.287 BAR26 696223.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.101 131 132 1 0.87 0.37 135 161 10 8.66 0.880 incl. 138 139							incl.					
BAR25 696051.291 4547096.459 705.897 151.8 97 -99 6.1 62 1 0.87 0.005 incl. 94 95 1 0.87 3.380 incl. 94 95 1 0.87 3.380 incl. 94 95 1 0.87 0.330 0.075 129 131 2 1.037 0.075 1.047 0.0290 BAR26 696023.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.0290 BAR26 696223.692 454684.841 711.774 295.2 285 -53 118 112 4 3.46 101 BAR26BIS 696232.692 454684.841 711.774 295.2 285 -53 118 112 1 0.37 5.057 BAR26BIS 696232.692 454684.841 711.774 295.2 285 -53 118 12 1 0.37<										1		I
BAR26 696233.581 4546919.34 712.164 92 283 -48 51 52 1 0.67 0.075 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.67 0.027 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.67 0.027 61 62 1 0.67 0.227 61 62 1 0.67 0.227 61 62 1 0.67 0.227 61 62 1 0.67 0.227 63 61 1 0.67 0.227 1 1.087 0.227 131 132 1 0.67 0.66 1 0.67 0.66 161 138 139 1 0.67 0.666 1 0.67 0.666 173 178 5 4.33 0.117 1.66	BAR25	696051.291	4547096.459	705.897	151.8	97	-59					
Incl. 94 95 1 0.87 3.380 121 122 1 0.87 0.075 129 131 2 1.73 0.075 129 131 2 1.73 0.075 129 131 2 1.73 0.075 129 131 2 1 0.87 0.057 129 1 0.87 0.057 0.65 0.65 120 1 0.87 0.205 0.66 0 61 62 1 0.87 0.205 130 122 4 3.46 0.101 1.13 1.1 0.87 0.2346 141 1 0.87 2.33 108 1.1 0.87 0.346 151 11 132 1 0.87 0.346 0.101 131 132 1 0.87 5.057 1.1 0.87 2.380 152 161 6 5.20	_											
BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.075 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.027 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.027 BAR26 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.101 BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.001 BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.010 BAR26BIS 696252.692 4546884.841 711.774 295.2 131 138 128 1 0.87 0.5057							incl.					
BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.290 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.027 BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.026 BAR26015 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.101 Incl. 138 146 10 8.66 0.87 5.057 incl. 143 144 1 0.87 5.057 incl. 138 139 1 0.87 5.057 incl. 143 144 1 0.87 2.472 16 138 139 1 0.87 0.507 incl. 143 144 1 0.87												
BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.227 61 62 1 0.87 0.236 68 91 5 57 1 0.87 0.227 61 62 1 0.87 0.236 80 81 1 0.87 0.236 BAR26 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.101 136 132 1 0.87 2.326 -53 108 112 4 3.46 0.101 136 136 146 10 8.66 0.080 0.66 0.880 0.129 135 161 6 5.20 0.117 149 151 2 1.087 2.472 1.16 1.087 2.472 155 161 6 5.20 0.117 116 1.087 0.322												
BAR26 696223.86 4546919.34 712.164 92 283 -48 51 52 1 0.87 0.057 61 622 1 0.87 0.066 80 81 1 0.87 0.067 80 81 1 0.87 0.227 61 62 1 0.87 0.268 80 81 1 0.87 0.227 61 62 1 0.87 0.268 80 81 1 0.87 0.066 136 112 4 3.46 0.012 131 132 1 0.87 0.667 131 132 1 0.87 0.666 136 146 10 8.66 0.80 116 1 0.87 0.2472 143 144 1 0.87 0.2472 173 0.129 155 161 6 5.20 0.117 166 170 4 3.48 0.87 0.290 <												
BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 109 112 4 3.46 BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 109 112 4 3.46 0.101 BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 109 112 4 3.46 0.101 131 132 1 0.87 0.666 0.800 0.66 0.800 0.66 0.800 0.66 0.800 0.61 134 134 1<0.87	BAR26	696223.86	4546919 34	712 164	92	283	-48					
BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.101 incl. 13 132 1 0.87 0.066 0.88 0.129 incl. 13 132 1 0.86 91 5 4.33 0.129 incl. 136 146 10 8.66 0.880 136 146 10 8.66 0.880 incl. 143 144 1 0.87 2.472 135 161 6 5.20 0.117 incl. 143 144 1 0.87 2.472 173 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 0.291 181 184 9 7.79 0.512 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.281 1.433 </td <td>BANZO</td> <td>050225.00</td> <td>4546515.54</td> <td>/12.104</td> <td>52</td> <td>205</td> <td>40</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BANZO	050225.00	4546515.54	/12.104	52	205	40					
BR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 1.08 112 4 3.46 0.101 BR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 1.08 112 4 3.46 0.011 131 132 1 0.87 0.066 0.880 incl. 138 139 1 0.87 5.057 incl. 138 149 151 2 1.73 0.129 incl. 143 144 1 0.87 2.472 11.73 0.129 incl. 138 149 151 2 1.73 0.129 incl. 149 151 2 1.73 0.129 131 186 10.87 0.290 incl. 185 194 9 7.79 0.512 173 0.290 141 0.87 1.425 incl. 185 194 9 7.79 0.512												
BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.001 136 146 10 8.66 0.880 131 132 1 0.87 0.066 136 146 10 8.66 0.880 136 146 10 8.66 0.880 147 143 143 144 1 0.87 2.472 149 151 2 1.73 0.129 135 161 6 5.20 0.117 166 170 4 3.46 0.352 173 178 5 4.33 0.190 181 182 1 0.87 0.290 185 161 6 5.20 0.117 181 182 14 9 7.79 0.512 173 173 1.73 0.290 181 182 14 0.87 1.248 197 199 2												
BAR26BIS 696252.692 4546884.841 711.774 295.2 285 -53 108 112 4 3.46 0.011 131 132 1 0.87 0.066 136 146 10 8.66 0.880 incl. 138 139 1 0.87 5.057 incl. 143 139 1 0.87 5.057 incl. 143 144 1 0.87 5.057 incl. 143 144 1 0.87 5.057 incl. 143 144 1 0.87 5.057 117 173 178 5 4.33 0.129 155 161 6 5.20 0.117 166 170 4 3.46 0.352 181 182 1 0.87 1.428 1 0.87 1.428 197 199 2 1.73 0.23 1.12 4.3 4.61 0.66 0.67 1.027 1.63 <td></td>												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 367 0.87 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 367 0.87 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 36 0.047 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 367 1.047 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 364 0.067 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 364 0.068 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 364 0.068 BAR27 696333.581 4547364.814 720.821 304.15 290 <	BAR26BIS	606252 602	1516001 011	711 774	205.2	285	-52					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 23 1 0.87 0.880 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 23 4 3.67 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 27 4 3.67 0.070 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 2 4 3.66 0.087 1.299 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 3.66 0.47 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 3.66 0.47 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 22 4 3.66 0.47 BAR27 696333.581 4547364.814 720.821 304.15 290	DAIL20013	090232.092	4340004.041	/11.//4	293.2	205	-55					
incl. 138 139 1 0.87 5.057 incl. 143 144 1 0.87 2.472 incl. 143 144 1 0.87 2.472 155 161 6 5.20 0.117 155 161 6 5.20 0.117 166 170 4 3.46 0.352 173 178 5 4.33 0.190 181 182 1 0.87 0.290 181 182 1 0.87 0.290 181 182 1 0.87 1.248 181 182 1 0.87 1.248 181 182 1 0.87 1.248 181 186 1 0.87 1.248 182 186 1 0.87 1.248 182 186 1 0.87 0.304 230 207 4 3.46 1.063 230 231 1 0.87 0.070 <												
incl. 143 144 1 0.87 2.472 149 151 2 1.73 0.129 155 161 6 5.20 0.171 166 170 4 3.46 0.352 173 178 5 4.33 0.190 181 182 1 0.87 0.290 181 182 10.87 0.290 181 182 10.87 0.290 181 185 186 1 0.87 0.290 181 187 188 1 0.87 1.285 197 199 2 1.73 0.232 197 199 2 1.73 0.232 197 199 2 1.73 0.232 197 199 2 1.73 0.232 203 207 4 3.46 1.087 197 199 2 1.73 0.232 230 231 1 0.87 0.340 197 192							incl					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 <td></td>												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 10.1 10.87 10.87 1.087 1.087 1.087 1.087 0.340 210 221 1 0.87 0.147 1.087 0.340 230 207 4 3.46 1.063 1.087 0.340 230 231 1 0.87 0.147 1.087 0.340 240 251 28 32 4 3.46 0.494 10.1 0.87 0.068 0.494 0.87 0.668 66 67 1 0.87 0.668 66<							IIICI.					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.352 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.432 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.040 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.046 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.047 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.447 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.447 BAR27 696333.581 4547364.814 720.821 304.15 290 <td></td>												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 0.87 0.290 181 182 1 0.87 0.290 185 194 9 7.79 0.512 181 182 1 0.87 0.425 1 187 188 1 0.87 1.248 197 199 2 1.73 0.232 1 0.87 1.248 197 199 2 1.73 0.232 1 1.66. 1.67 1.68.5 1.66.5 1.67 1.68.5 1.66.5 1.67 1.68.7 0.201 1.68.7 0.202 1.73 0.232 1.60 0.446 1.66 1.67 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 1.68.7 0.201 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.437 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 306.15 10.47<												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.477 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.467 BAR27 69633.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.468 BAR27 69633.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 69633.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 69633.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 69633.581 4547364.814 720.821 304.15 290												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 IBAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 Incl. 197 199 2 1.73 0.232 203 2007 4 3.46 1.063 incl. 203 205 2 1.73 0.232 200 221 1 0.87 0.340 200 221 1 0.87 0.107 254 257 3 2.60 0.446 incl. 30 31 1 0.87 1.047 incl. 30 31 1 0.87 0.068 66 67 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.070 84 85 1 0.87 0.079							in al					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 1.063 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 incl. 30 31 1 0.87 0.107 254 257 3 2.601 0.446 incl. 30 31 1 0.87 0.107 260 257 3 2.601 0.446 incl. 30 31 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.070 72 73 1 0.87 0.299 80 81 1 0.87 0.618 84 85 1 0.87 0.079												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 1.063 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 BAR27 696333.581 4547364.814 70.87 0.070 1.047 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>inci.</td> <td></td> <td></td> <td></td> <td></td> <td></td>							inci.					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 Incl. 30 31 1 0.87 0.007 254 257 3 2.60 0.446 Incl. 30 31 1 0.87 0.094 Incl. 30 31 1 0.87 0.046 Incl. 30 31 1 0.87 0.046 Incl. 30 31 1 0.87 0.068 Incl. 30 31 1 0.87 0.068 Incl. 30 31 1 0.87 0.068 Incl. 30 31 1 0.87 0.070 Incl. 72 73 1 0.87 0.070 Incl. 84 85 1 0.87 0.618												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 Incl. 304.15 290 -45 28 32 4 3.46 0.494 Incl. 304.15 290 -45 28 32 4 3.46 0.494 Incl. 30 31 1 0.87 1.047 Incl. 30 31 1 0.87 0.068 Incl. 30 31 1 0.87 0.068 Incl. 72 73 1 0.87 0.070 Incl. 80 81 1 0.87 0.070 Incl. 80 81 1 0.87 0.070 Incl. 80 81 1 0.87 0.618 Incl. 84 85 1 0.87 0.079												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 Incl. 30 31 1 0.87 0.007 Incl. 30 31 1 0.87 0.046 Incl. 30 31 1 0.87 0.046 Incl. 30 31 1 0.87 0.047 Incl. 30 31 1 0.87 0.068 Incl. 30 31 1 0.87 0.068 Incl. 72 73 1 0.87 0.070 Incl. 80 81 1 0.87 0.070 Incl. 80 81 1 0.87 0.618 Incl. 84 85 1 0.87 0.079							INCI.					
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 incl. 30 31 1 0.87 1.047 40 41 1 0.87 0.068 50 72 73 1 0.87 0.070 66 67 1 0.87 0.299 72 73 1 0.87 1.299 80 81 1 0.87 0.618 84 85 1 0.87 0.079												
BAR27 696333.581 4547364.814 720.821 304.15 290 -45 28 32 4 3.46 0.494 incl. 30 31 1 0.87 1.047 40 41 1 0.87 0.068 66 67 1 0.87 0.070 72 73 1 0.87 1.299 80 81 1 0.87 0.618 84 85 1 0.87 0.079												
incl. 30 31 1 0.87 1.047 40 41 1 0.87 0.068 66 67 1 0.87 0.070 72 73 1 0.87 1.299 80 81 1 0.87 0.618 84 85 1 0.87 0.079		606222 505	4547264.045	720 024	204.45	200						
404110.870.068666710.870.070727310.871.299808110.870.618848510.870.079	BAR27	696333.581	454/364.814	/20.821	304.15	290						
666710.870.070727310.871.299808110.870.618848510.870.079							incl.					
72 73 1 0.87 1.299 80 81 1 0.87 0.618 84 85 1 0.87 0.079												
80 81 1 0.87 0.618 84 85 1 0.87 0.079												I
84 85 1 0.87 0.079												
89 93 4 3.46 0.051												
	I							89	93	4	3.46	0.051

							96	100	4	3.46	0.588
						incl.	99	100	1	0.87	1.021
							138	139	1	0.87	0.315
							213	214	1	0.87	0.555
							253	254	1	0.87	0.189
							264	266	2	1.73	0.391
							270	271	1	0.87	0.051
							274	275	1	0.87	0.391
							282	285	3	2.60	0.534
						incl.	283	284	1	0.87	1.072
BAR28	696257.018	4547480.9	728.57	217.3	281	-54	16	17	1	0.87	1.097
							28	29	1	0.87	0.075
							34	35	1	0.87	0.265
							63	64	1	0.87	0.290
							78	79	1	0.87	0.177
							93	94	1	0.87	0.085
							117	118	1	0.87	0.116
							152	153	1	0.87	0.116
							171	172	1	0.87	4.817
							183	184	1	0.87	0.087
BAR29	696298.471	4547730.051	730.738	220.5	290.5	-48.5	63	64	1	0.87	0.454
DANZJ	050250.471	4347730.031	/30./30	220.5	250.5	40.5	195	197	2	1.73	0.240
BAR30	696323.944	4547921.499	727.586	213.4	287	-51	58	59	1	0.87	3.506
Di illoo	050525.544	1317321.133	727.500	213.4	207	51	66	67	1	0.87	1.211
							195	196	1	0.87	0.100
BAR31	696265.979	4547626.356	729.435	205.3	287	-49	32	35	3	2.60	1.215
5, 1101	050205.575	-13-17 020.330	723.433	203.3	207	incl.	32	33	1	0.87	2.560
							70	71	1	0.87	0.151
							93	96	3	2.60	0.166
							170	171	1	0.87	0.112
							181	183	2	1.73	0.177
							201	202	1	0.87	0.174
BAR32	696464.444	4547898.595	733.411	100.2	286.5	-59	40	45	5	4.33	0.134
5, 1102	050101.111	-13-17050.555	/ 55.411	100.2	20010		52	53	1	0.87	0.643
							65	66	1	0.87	0.328
BAR33	696066.987	4547200.959	711.618	151.1	98.5	-55.2	23	24	1	0.87	0.580
2, 1100		10 17 2001000	/ 11/010	101.1	5010	0012	28	29	1	0.87	0.091
							61	62	1	0.87	0.631
							72	75	3	2.60	0.192
							128	129	1	0.87	0.132
							138	139	1	0.87	0.073
BAR34	696465.449	4547822.562	731.252	87	287	-67	68	69	1	0.87	0.240
D/ 110-7	00000.749	-3-7022.302	, 51.252	5,	207	0,	74	75	1	0.87	0.240
BAR35	696208.188	4546770.001	700.787	277.3	286.5	-50.6	74	75	1	0.87	0.078
07/133	050200.100		/00./07	277.5	200.5	50.0	124	125	1	0.87	0.081
							124	123	1	0.87	0.131
							132	128	14	12.12	0.131
							152	163	8	6.93	1.261
						incl.	160	162	2	1.73	4.481
						mer.	100	102	1	0.87	1.150
							1/0	1/1	Ŧ	0.07	1.130

							183	191	8	6.93	0.335
						incl.	190	191	1	0.87	2.107
							201	202	1	0.87	0.929
							205	206	1	0.87	1.109
BAR36	696275.958	4547011.768	715.235	205.4	282.8	-58.3	74	75	1	0.87	0.252
							87	88	1	0.87	0.378
							103	104	1	0.87	0.092
							117	121	4	3.46	0.256
							124.9	129	4.1	3.55	0.628
							137	139	2	1.73	0.435
							142	143	1	0.87	0.064
							145	151	6	5.20	0.305
							169	172	3	2.60	0.092
							175	181	6	5.20	0.322
						incl.	175	176	1	0.87	1.185
							204	205	1	0.87	0.845
BAR37	696309.8	4547107.451	714.776	217.4	290	-56	88	89	1	0.87	0.202
							106	108	2	1.73	0.115
							124	126	2	1.73	0.276
							141	144	3	2.60	0.043
							151	154	3	2.60	0.142
							178	181	3	2.60	0.096
							192	193	1	0.87	0.151
							205	208	3	2.60	0.158
BAR38	696099.286	4546557.55	688.277	175.4	291	-57	98	99	1	0.87	2.812
							109	112	3	2.60	0.171
							115	116	1	0.87	0.555
							119	120	1	0.87	0.085
							124	125	1	0.87	0.189
							132	133	1	0.87	0.189
							137	138	1	0.87	0.139
							148	149	1	0.87	0.240
BAR39	696280.204	4547297.103	726.76	145.1	287	-45	10	11	1	0.87	4.805
	000200.201	10172071200	, 201, 0	1.011			20	21	1	0.87	0.113
							28	29	1	0.87	0.070
							35	36	1	0.87	0.290
							50	51	1	0.87	0.668
							54	55	1	0.87	0.139
							58	63	5	4.33	0.093
							65	66	1	0.87	0.116
							74	75	1	0.87	0.240
							74	79	1	0.87	0.240
							82	84	2	1.73	0.104
							82 89	93	4	3.46	0.328
						incl.	89 91	93 92	4	0.87	2.699
						inci.	104	92 105	1	0.87	0.067
							104	105	1	0.87	0.087
							109	134	3	2.60	2.289
						incl	131	134	3	0.87	6.356
BAR40	696352.39	4547283.516	713.685	223.3	285.5	incl. -44.5	37	38	1	0.87	0.113
	090552.39	4547205.510	/ 12.002	223.3	203.3	-44.3	57	20	т	0.07	0.115

64 65 1	0.07	
	0.87	0.227
68 69 1	0.87	0.094
89 92 3	2.60	0.212
96 97 1	0.87	0.080
100 101 1	0.87	0.085
	2.60	0.111
117 119 2	1.73	0.991
incl. 118 119 1	0.87	1.879
	0.87	0.102
153 154 1	0.87	1.526
158 168 10	8.66	0.140
174 176 2	1.73	0.385
186 187 1	0.87	0.103
200 202 2	1.73	0.171
212 213 1	0.87	0.066
BAR41 696370.1 4547402.478 715.535 174.8 285 -45 45 48 3	2.60	0.183
61 65 4	3.46	0.480
incl. 61 62 1	0.87	1.450
69 70 1	0.87	0.214
93 94 1	0.87	0.126
101 102 1	0.87	1.059
	3.46	0.441
incl. 113 114 1	0.87	1.475
123 129 6	5.20	0.756
incl. 123 124 1	0.87	3.481
	0.87	
		0.139
	0.87	0.252
BAR42 696382.02 4547354.001 712.715 199.25 286 -45 44 45 1	0.87	0.164
66 67 1	0.87	3.607
121 122 1	0.87	0.083
132 133 1	0.87	0.870
	0.87	0.094
BAR43 696318.42 4547417.416 724.319 169.6 285 -44 58 60 2	1.73	0.271
68 69 1	0.87	0.126
72 73 1	0.87	0.303
82 83 1	0.87	0.593
BAR44 696290.805 4547255.188 722.49 115.3 290 -44.5 13 14 1	0.87	0.126
18 19 1	0.87	0.063
21 22 1	0.87	1.248
28 29 1	0.87	0.068
47 48 1	0.87	0.151
55 56 1	0.87	0.177
70 76 6	5.20	1.818
incl. 70 71 1	0.87	9.609
89 98 9	7.79	0.749
	0.87	1.248
	0.87	3.695
	0.87	0.100
106 108 2	1.73	0.082
111 112 1	0.87	0.492

r											
BAR45	696297.888	4547325.869	725.436	111.3	287	-45.5	12	13	1	0.87	0.656
							17	18	1	0.87	0.164
							34	38	4	3.46	0.377
						incl.	37	38	1	0.87	1.122
							54	55	1	0.87	0.227
							61	62	1	0.87	0.530
							72	73	1	0.87	0.189
							78	79	1	0.87	0.567
							92	93	1	0.87	0.265
BAR46	696350.058	4546857.8	692.808	310.3	287.5	-50.2	234	235	1	0.87	0.248
							240	242	2	1.73	0.318
							245	246	1	0.87	0.098
							291	292	1	0.87	1.079
							299	300	1	0.87	1.064
							304	310	6	5.20	0.434
						incl.	306	307	1	0.87	1.553
BAR46BIS	696352.023	4546862.66	693.025	443	287.8	-51.6	219	220	1	0.87	0.124
							248	249	1	0.87	0.063
							260	261	1	0.87	0.202
							268	269	1	0.87	0.273
							279	280	1	0.87	0.072
							287	288	1	0.87	0.709
							303	304	1	0.87	0.093
							312	313	1	0.87	0.134
							317	318	1	0.87	0.385
							321	322	1	0.87	0.994
							349	350	1	0.87	0.408
							352	353	1	0.87	0.056
							365	366	1	0.87	0.861
							369	370	1	0.87	0.110
							372	376	4	3.46	0.423
						incl.	306	307	1	0.87	1.553
							411	412	1	0.87	0.625
BAR47	696232.941	4546831.26	710.871	270.1	288	-62	73	74	1	0.87	0.277
							106	107	1	0.87	0.366
							128	129	1	0.87	0.088
							136	140	4	3.46	0.080
							168	181	13	11.26	0.281
							184	185	1	0.87	0.202
							188	195	7	6.06	0.299
							198	219	21	18.19	0.376
						incl.	205	207	2	1.73	1.085
						incl.	208	209	1	0.87	1.602
						incl.	214	215	1	0.87	1.829
							224	225	1	0.87	0.340
BAR48	696232.227	4546831.42	710.876	219.8	291	-47.5	65	66	1	0.87	0.088
				220.0			133	134	1	0.87	0.076
							133	143	2	1.73	0.202
							146	154	8	6.93	1.535
						incl.	146	147	1	0.87	6.129
I							210	,	-	0.07	5.125

						incl.	150	151	1	0.87	5.435
							158	162	4	3.46	2.221
						incl.	158	159	1	0.87	1.110
						incl.	161	162	1	0.87	7.756
							165	166	1	0.87	2.724
							168	169	1	0.87	0.050
							173	174	1	0.87	0.050
							178	179	1	0.87	0.189
							184	185	1	0.87	0.378
							192	193	1	0.87	0.076
							214	215	1	0.87	0.076
BAR49	696199.715	4546708.36	698.05	251.1	285	-56	168	169	1	0.87	0.151
Dritters	050155.715	1510700.50	050.05	231.1	205	50	173	178	5	4.33	0.221
							181	183	2	1.73	3.121
						incl.	181	182	1	0.87	6.015
						inci.	188	192	4	3.46	0.293
							200	201	4	0.87	0.189
							200	201	1		0.185
							208	209	11	0.87 9.53	0.088
							211	240	3	2.60	0.147
	606204.047	4546052.44	702.007	200.0	286	-61	243 115	244 120	1 5	0.87 4.33	0.050
BAR50	696284.947	4546953.11	702.007	269.8	280	-01	115		3	4.33 2.60	0.103 0.219
								160			
							163	169	6	5.20	0.738
							173	176	3	2.60	0.208
							179	189	10	8.66	0.826
						incl.	184	187	3	2.60	1.648
							196	211	15	12.99	0.406
						incl.	204	205	1	0.87	1.248
						incl.	206	207	1	0.87	1.122
							241	242	1	0.87	0.101
BAR51	696052.214	4546450.83	693.362	109.95	284.6	-52.7	88	89	1	0.87	0.265
							95	98	3	2.60	0.093
							107	108	1	0.87	0.050
							76	77	1	0.87	0.076
BAR52	696284.188	4546953.22	702.029	213.95	282.1	-46.5	121	123	2	1.73	0.372
							126	138	12	10.39	0.209
							141	142	1	0.87	0.063
							144	154	10	8.66	0.361
							158	159	1	0.87	0.240
							170	185	15	12.99	0.274
						incl.	184	185	1	0.87	2.270
							197	198	1	0.87	0.050
BAR53	696035.055	4546482.91	686.904	72.45	285.1	-51.5	53	54	1	0.87	0.126
							61	64	3	2.60	0.518
							69	70	1	0.87	0.076
BAR54	696118.018	4546640.7	697.771	139.85	285.5	-44.3	34	35	1	0.87	0.303
							93	96	3	2.60	1.526
							102	112	10	8.66	0.604
						incl.	105	106	1	0.87	1.904

						incl.	110	111	1	0.87	2.535
							116	126	10	8.66	2.883
						incl.	119	121	2	1.73	8.796
						incl.	124	126	2	1.73	5.435
							129	131	2	1.73	0.240
							136	137	1	0.87	0.252
BAR55	696147.96	4546734.03	706.601	177.45	284.3	-64.1	101	102	1	0.87	0.076
							110	118	8	6.93	0.304
							123	147	24	20.78	0.720
						incl.	126	127	1	0.87	3.153
						incl.	132	134	2	1.73	1.041
						incl.	138	139	1	0.87	1.034
						incl.	141	142	1	0.87	6.192
						incl.	145	146	1	0.87	1.248
							152	153	1	0.87	0.883
BAR56	696144.221	4546628.421	697.154	83	282	-50			significant inte		
BAR56BIS	696144.78	4546626.32	697.186	241.9	277	-50	79	80	1	0.87	0.088
							85	86	1	0.87	0.050
							102	104	2	1.73	0.618
							134	135	1	0.87	0.164
							149	152	3	2.60	0.260
							156	160	4	3.46	0.940
							178	179	1	0.87	1.160
							201	202	1	0.87	0.517
BAR57	695995.646	4546589.334	682.784	93.2	107	-41	10	11	1	0.87	0.366
57 1107	0000000000	10100001001	0021701	5512	207		14	15	1	0.87	0.328
							22	25	3	2.60	0.231
							33	34	1	0.87	0.063
							59	60	1	0.87	1.211
							68	69	1	0.87	0.492
BAR58	696087.732	4546539.52	688.047	150	284.5	-48.2	67	68	1	0.87	0.643
	000007.002	10 10000102		200			71	72	1	0.87	0.113
							79	81	2	1.73	2.043
						incl.	79	80	1	0.87	4.023
							89	90	1	0.87	0.908
							94	95	1	0.87	0.441
							109	112	3	2.60	0.811
						incl.	105	112	1	0.87	1.841
						inci.	111	124	6	5.20	0.202
							140	143	3	2.60	0.484
BAR59	695976.879	4546549.047	683.046	74.6	103	-43.8	38	44	6	5.20	0.494
5, 1135	555570.075	13-103-13.0-7	000.040	,	105	incl.	43	44	1	0.87	1.778
							62	63	1	0.87	0.126
BAR60	696114.599	4546587.207	694.574	153.5	284	-46.7	86	87	1	0.87	0.120
27 1100	000114.000	13-10307.207	004.074	133.5	204		108	111	3	2.60	3.796
						incl.	108	111	1	0.87	11.224
						mer.	115	120	5	4.33	0.260
							115	120	1	0.87	0.200
							120	127	1	0.87	0.921
							125	130	11	9.53	1.323
							133	140	11	5.55	1.323

						incl.	142	143	1	0.87	11.829
						incl.	145	146	1	0.87	1.312
DAD (1	606000.064	4546640 700	600.054	425.4	205 5	40.7	150	151	1	0.87	0.151
BAR61	696098.861	4546619.738	698.254	135.1	285.5	-49.7	60	61	1	0.87	0.277
							63	64	1	0.87	0.063
							68	70	2	1.73	0.284
							73	74	1	0.87	0.063
						in al	98	103	5	4.33	1.554
						incl.	100 110	102 115	2 5	1.73 4.33	3.821 0.439
						incl.	110	115	1	4.33 0.87	1.501
						mer.			1 2	1.73	
							121 128	123 130	2	1.73	0.202 0.164
BAR62	696119.868	4546663.127	698.324	150.1	288	-52	37	38	1	0.87	0.164
DARUZ	090119.808	4540005.127	098.324	150.1	200	-32	48	49	1	0.87	0.104
							79	80	1	0.87	0.088
							82	83	1	0.87	0.277
							85	86	1	0.87	0.101
							98	99	1	0.87	0.240
							103	116	13	11.26	0.554
						incl.	103	109	15	0.87	3.443
						incl.	100	112	1	0.87	1.299
						inci.	125	126	1	0.87	0.063
							132	133	1	0.87	1.690
BAR63	696225.921	4546738.714	698.898	337.8	286.5	-53.2	151	152	1	0.87	0.063
							159	160	1	0.87	0.605
							167	171	4	3.46	0.142
							174	184	10	8.66	0.233
						incl.	174	175	1	0.87	1.034
							189	195	6	5.20	0.065
							198	206	8	6.93	0.248
						incl.	205	206	1	0.87	1.375
							218	221	3	2.60	0.109
							228	229	1	0.87	0.126
							254	255	1	0.87	0.177
							259	261	2	1.73	2.125
							287	288	1	0.87	0.076
BAR64	696138.562	4546712.825	705.428	149	283	-51.6	78	89	11	9.53	0.088
							92	94	2	1.73	0.158
							98	99	1	0.87	0.681
							103	114	11	9.53	0.196
							120	124	4	3.46	0.224
							135	137	2	1.73	0.562
							66	69	3	2.60	0.076
BAR65	696243.266	4546861.375	711.079	223.1	286.5	-55	135	136	1	0.87	0.088
							153	156	3	2.60	0.055
							158	161	3	2.60	0.096
							169	176	7	6.06	0.333
							179 184	180	1 4	0.87	0.303
								188		3.46	0.104

							193	194	1	0.87	0.404
							198	203	5	4.33	0.199
							207	208	1	0.87	0.177
							211	212	1	0.87	0.088
							221	223	2	1.73	0.543
						incl.	221	222	1	0.87	1.072
BAR66	696226.672	4546789.773	701.579	235.2	283	-56.8	146	147	1	0.87	0.504
							153	154	1	0.87	0.076
							156	157	1	0.87	0.063
							169	178	9	7.79	0.114
							180	183	3	2.60	0.059
							186	187	1	0.87	0.063
							192	193	1	0.87	0.706
							196	201	5	4.33	0.994
						incl.	196	197	1	0.87	3.771
							205	207	2	1.73	0.114
							216	218	2	1.73	0.189
BAR67	696290.53	4547033.488	716.025	229.5	287	-56.9	109	113	4	3.46	0.208
							125	126	1	0.87	0.050
							131	132	1	0.87	0.050
							136	139	3	2.60	0.315
							144	164	20	17.32	0.341
						incl.	147	148	1	0.87	2.056
							173	175	2	1.73	1.564
						incl.	173	174	1	0.87	2.446
							183	184	1	0.87	0.504
							203	204	1	0.87	0.555
							207	208	1	0.87	0.063
							222	223	1	0.87	0.113
BAR68	696292.83	4547058.969	714.919	198.7	283	-57.3	61	62	1	0.87	0.240
							83	84	1	0.87	0.076
							95	96	1	0.87	0.063
							109	110	1	0.87	0.050
							112	115	3	2.60	0.055
							116	117	1	0.87	0.063
							122	123	1	0.87	0.277
							126	135	9	7.79	0.055
							137	138	1	0.87	0.050
							140	142	2	1.73	0.328
							147	152	5	4.33	0.288
							157	158	1	0.87	0.177
							157 164	158 165	1 1	0.87 0.87	0.177 0.050
							164	165	1	0.87	0.050
						incl.	164 170	165 171	1 1	0.87 0.87	0.050 0.050
						incl.	164 170 181 181	165 171 184 183	1 1 3 2	0.87 0.87 2.60 1.73	0.050 0.050 2.081 3.096
							164 170 181 181 187	165 171 184 183 190	1 1 3 2 3	0.87 0.87 2.60 1.73 2.60	0.050 0.050 2.081 3.096 2.018
						incl.	164 170 181 181 187 187	165 171 184 183 190 188	1 1 3 2 3 1	0.87 0.87 2.60 1.73 2.60 0.87	0.050 0.050 2.081 3.096 2.018 3.203
BAR69	696215.476	4546817.208	706.37	248.2	283		164 170 181 181 187	165 171 184 183 190	1 1 3 2 3	0.87 0.87 2.60 1.73 2.60	0.050 0.050 2.081 3.096 2.018

						110	112	2	1.73	0.341
						120	125	5	4.33	0.219
						130	133	3	2.60	0.164
						136	137	1	0.87	0.050
						140	153	13	11.26	0.451
					incl.	152	153	1	0.87	2.358
						157	158	1	0.87	0.063
						160	163	3	2.60	0.769
					incl.	160	161	1	0.87	2.207
						166	176	10	8.66	0.115
						178	179	1	0.87	0.063
						189	190	1	0.87	0.050
						191	192	1	0.87	0.050
						194	197	3	2.60	0.366
						227	228	1	0.87	0.643
BAR70	696054.03 4547043.386	5 710.382	279.7	103	-52.3	55	56	1	0.87	0.643
5, 1170	550034.05 4547045.500	, ,10.302	2, 3.7	105	52.5	70	72	2	1.73	0.492
						78	80	2	1.73	0.593
						96	97	1	0.87	0.139
						114	116	2	1.73	0.057
						123	124	1	0.87	0.076
						123	124	2	1.73	0.069
						160	162	2	1.73	0.063
						172	102	1	0.87	0.003
						172	189	1	0.87	0.030
						200	201	1		
						200		1	0.87	0.050
							205		0.87	0.492
						208	209	1	0.87	0.303
						218	219	1	0.87	0.202
						222	223	1	0.87	0.101
						229	235	6	5.20	0.250
						238	239	1	0.87	0.113
						245	248	3	2.60	0.071
BAR71	696319.482 4546894.124	4 696.005	260.6	285.5	-51.3	162	163	1	0.87	0.113
						169	170	1	0.87	0.126
						190	200	10	8.66	0.149
						204	205	1	0.87	0.252
						211	212	1	0.87	0.177
						215	223	8	6.93	0.235
					incl.	215	216	1	0.87	1.400
						228	231	3	2.60	0.105
						234	235	1	0.87	0.050
						244	245	1	0.87	1.879
						252	253	1	0.87	0.353
BAR72	696312.402 4547226.581	717.67	157	284.5	-48	21	22	1	0.87	0.214
						31	32	1	0.87	0.265
						47	48	1	0.87	0.189
						58	59	1	0.87	0.088
						67	68	1	0.87	0.050
						72	83	11	9.53	0.357

BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 incl. 77 73 1 0.8 0.8 0.8 0.9 1 0.8 115 118 3 2.6 115 118 3 2.6 122 122 123 1 0.8 137 138 1 0.8 137 138 1 0.8 137 138 1 0.8 141 149 8 6.5 163 188 2.5 2.1 incl. 176 177 1 0.8 0.8 0.9 0.1 0.8 163 188 2.5 2.1 163 188 2.5 2.1 1.0 0.8 0.8 0.9 0.8 0.9 0.8 0.8 0.9 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9	7 1.261 7 0.076 7 0.063 8 0.176 9 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 9 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 110 284.5 Incl. 176 117 110	7 0.076 7 0.063 8 0.176 9 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 9 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 12 123 10 0.8 Incl. 148 149 1 0.8 0.8 0.8 0.8 Incl. 143 3 2.6 122 123 13 0.8 Incl. 141 149 8 0.8 0.8 0.8 0.8 Incl. 148 149 1 0.8 0.8 0.8 0.8 Incl. 148 149 1 0.8 <t< td=""><td>7 0.063 8 0.176 0 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320</td></t<>	7 0.063 8 0.176 0 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 12 123 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 11 0.8 Incl. 148 149 1 0.8 Incl. 176 177 1 0.8 Incl. 193 194 1 0.8 Incl. 193 194 1 0.8 Incl. 193 194 1 0.8 Incl. 133 194 1 0.8 Incl. 193	7 0.063 8 0.176 0 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 103 141 419 8 6 Incl. 176 177 110 115 118 3 2.6 Incl. 141 149 8 6.9 3<	0 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 10 0.8 Incl. 176 188 25 21.3 10 0.8 Incl. 141 149 8 6.9 0.8 Incl. 141 149 8 0.8 Incl. 163 188 25 21.1 Incl. 176 177 1 0.8 Incl. 176 177 1 0.8 Incl. 176 177 1 0.8 Incl. 191 197 6 5.2 Incl. 193 194 1 0.8 Incl. 193 194 1 0.8 Incl. 163 206 207 1 0.8	0 0.210 7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 Incl. 148 149 8 6.9 6.9 100 1 0.8 Incl. 148 149 1 0.8 141 149 8 6.9 Incl. 148 149 1 0.8 141 149 14 0.8 Incl. 148 149 1 0.8 163 188 25 21.1 Incl. 176 177 1 0.8 163 188 25 21.1 Incl. 176 177 1 0.8 10 1.1 0.8 Incl. 176 177 1 0.8 1.1 0.8 1.1 0.8 Incl. 191 197 6 5.2 1.1 0.8 1.1 0.8 Incl. 191 197 1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8	7 0.050 8 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 14 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 10 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 10 0.8 Incl. 141 149 1 0.8 1 0.8 1 0.8 Incl. 193 194 1 0.8 1 0.8 1 0.8 1	3 0.298 7 0.555 8 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 0.555 3 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 0.252 7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 100 1 0.8 Incl. 176 177 1 0.8 25 21.1 1 0.8 Incl. 176 177 1 0.8 1	7 1.261 7 0.479 5 0.235 7 2.081 0 1.320
BAR73 696297.728 4546927.31 699.06 320.1 284.5 -45.1 109 110 1 0.8 Incl. 163 188 25 21. Incl. 176 177 1 0.8 Incl. 176 177 1 0.8 Incl. 176 177 1 0.8 Incl. 191 197 6 5.2 Incl. 193 194 1 0.8 Incl. 103 204 1 0.8 Incl. 103 207 1 0.8 Incl. 104 1 0.8 1 0.8 Incl. 102 103 1 0.8 1 0.8	7 0.479 5 0.235 7 2.081 0 1.320
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 0.235 7 2.081 0 1.320
incl. 176 177 1 0.8 191 197 6 5.2 incl. 193 194 1 0.8 203 204 1 0.8 206 207 1 0.8 208 209 1 0.8 212 214 2 1.7	7 2.081 0 1.320
191 197 6 5.2 incl. 193 194 1 0.8 203 204 1 0.8 206 207 1 0.8 208 209 1 0.8 212 214 2 1.7	1.320
incl. 193 194 1 0.8 203 204 1 0.8 206 207 1 0.8 208 209 1 0.8 212 214 2 1.7	
203 204 1 0.8 206 207 1 0.8 208 209 1 0.8 212 214 2 1.7	
206 207 1 0.8 208 209 1 0.8 212 214 2 1.7	
208 209 1 0.8 212 214 2 1.7	
212 214 2 1.7	
285 291 6 5.2	
BAR74 696308.973 4546818.595 692.804 384.3 289 -61.3 210 211 1 0.8	
DAR/4 030506.575 4540616.595 052.604 564.5 269 -01.5 210 211 1 0.6 242 243 1 0.6	
242 243 1 0.6264 267 3 2.6	
204 207 3 2.6271 272 1 0.8	
337 339 2 1.7	
343 346 3 2.6	
359 360 1 0.8 363 364 1 0.8	
371 372 1 0.8	
375 376 1 0.8	
BAR75 696311.353 4546974.327 701.265 226.2 285 -52.2 149 150 1 0.8	
153 165 12 10.	
incl. 153 154 1 0.8	
incl. 173 174 1 0.8	
incl. 175 176 1 0.8	
incl. 180 181 1 0.8	
188 189 1 0.8	
198 199 1 0.8	
205 211 6 5.2	
incl. 207 208 1 0.8	
217 218 1 0.8	1 000
BAR76 696406.948 4547487.594 714.492 192.6 285 -45 74 75 1 0.8 92 95 3 2.6	7 0.164

BAR77 696369.003 4547502.096 719.027 191.8 286 -45 46 4 0.87 0.033 BAR77 696369.003 4547502.096 719.027 191.8 285 -45 46 42 1.0.87 0.033 BAR77 696369.003 4547502.096 719.927 191.8 285 -45 46 42 1.037 0.029 BAR77 696369.003 4547502.096 719.927 191.8 285 -45 46 42 1.0.37 0.029 BAR78 696369.003 4547502.096 719.927 191.8 285 -45 46 43 0.027 0.027 BAR78 696369.003 4547405.001 719.091 153. 280.7 -56.8 64 65 1 0.037 0.028 BAR79 096204.291 454739.07 710.01 153 286 -64 65 1<0.037 0.038 BAR80 696204.024 4547392.07 716.01												
BAR77 696369.023 4547302.006 719.927 101.8 245 456 16 1 0.87 0.088 BAR77 696369.023 4547302.006 719.927 101.8 245 456 48 2 1.73 0.038 BAR77 696369.023 4547302.006 719.927 101.8 285 457 46 48 2 1.73 0.1017 BAR77 696369.023 4547302.006 719.927 101.8 285 457 46 48 2 1.037 0.038 BAR78 696369.023 4547302.006 719.927 101.8 285 457 45 46 48 2 1.037 0.028 BAR80 69639.023 4547488.601 719.081 153.6 280.7 -56.8 64 45 1 0.37 0.028 BAR80 696024.231 4547485.601 719.081 153.6 280.7 -56.8 64 45 1 0.37 0.026							incl.	92	93	1	0.87	2.270
BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 48 2 1/3 0.030 BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 48 2 1/3 0.047 0.050 BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 48 2 1/3 0.047 0.429 BAR78 696369.682 4547449.601 719.927 191.8 285 -45 46 48 2 1/3 0.131 BAR78 696369.682 4547449.601 719.081 153.6 280.7 -56.8 6 6 1 0.67 0.038 BAR78 696369.682 4547449.601 719.01 153 284.3 - 10.3 1.0 67 0.027 BAR79 696369.682 4547449.201 712.01 153 284.4 45.1 97 9 2 1.13								104	105	1	0.87	0.202
BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 42 1.73 0.030 BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 48 2 1.73 0.030 BAR77 696369.023 4547502.096 719.927 191.8 285 -45 46 48 2 1.73 0.017 BAR78 696369.682 4547409.601 719.927 191.8 280.7 -56.8 46 0.0 1.027 0.076 118 119 1 0.037 0.016 1.18 1.19 1 0.037 0.113 12 116 1 0.047 1.037 0.113 1.12 1.15 4 0.077 0.027 130 1 0.37 1.013 2.88.8 -45.4 7 9 1.037 0.076 1312 115 14 1.037 0.0227 1.007 1.037								128	129	1		
BAR77 696360 023 454/502 096 719 027 101.8 285 450 1 0.87 0.008 BAR77 696360 023 454/502 096 719 027 101.8 285 45 46 48 2 1.73 0.0137 BAR77 696360 023 454/502 096 719 027 101.8 285 45 46 48 2 1.73 0.0177 BAR78 596 6 5.20 0.017 111 13.8 28 99 1 0.477 0.0177 BAR78 5960 6 5.20 0.017 111 13.6 280.7 -56.8 64 05 1 0.87 0.227 BAR78 59602.291 4547482.601 719.081 133.6 280.7 -56.8 64 05 1 0.87 0.318 BAR79 59602.291 454745.301 714.01 153 288.8 -45.4 -10.17 1.3 0.326 BAR80 066002.238 </td <td></td>												
BAR77 696369.023 4547502.096 719.527 151.8 285 -15 46 48 2 1.73 0.030 BAR77 696369.023 4547502.096 719.527 151.8 285 -15 46 48 2 1.73 0.030 BAR77 696369.023 4547502.096 719.527 151.8 285 -45 46 48 2 1.73 0.017 BAR78 696369.023 454749.601 719.081 153.6 280.7 -56.8 9 1 0.37 0.131 BAR78 696369.682 454749.601 719.081 153.6 280.7 -56.8 9 1 0.37 0.133 BAR78 696309.682 454749.601 719.01 153 288.7 -56.8 9 1 0.37 0.227 BAR79 096024.291 454759.7 714.01 153 288.7 -56.8 9 1 0.37 0.378 BAR80 096024.291 4												
BAR77 696395.023 4547302.008 719.927 191.8 285 45 46 48 2 1.73 0.030 BAR77 696395.023 4547302.008 719.927 191.8 285 .45 46 48 2 1.73 0.037 BAR78 696395.023 4547302.008 719.927 191.8 285 .45 46 48 2 1.73 0.037 BAR78 696395.082 454749.601 719.081 153.6 280.7 -56.8 64 65 1<0.87												
BAR77 696309.023 4547302.096 719.927 191.8 285 45 46 48 2 1.73 0.107 BAR77 696309.023 4547302.096 719.927 191.8 285 45 46 48 2 1.73 0.017 BAR78 696309.023 4547302.096 719.927 191.8 285 45 46 48 2 1.73 0.012 BAR78 696309.662 4547449.601 719.061 153.6 280.7 -56.8 65 1 0.87 0.313 BAR78 696302.682 4547449.601 719.061 153.6 280.7 -56.8 65 1 0.87 0.351 BAR79 696024.291 4547393.7 714.01 153 288.8 45.4 Motificant Intersections 129 130 1 0.87 0.076 BAR80 696024.291 4547392.664 708.637 266.3 285 45.4 97 99 2 1.73 0.561<												I
BAR77 696380 023 4547502.096 719.927 191.8 785 -45 46 48 2 1.73 0.107 BAR77 696380 023 4547502.096 719.927 191.8 785 -45 46 48 2 1 0.87 0.419 BAR78 696390.023 4547405.001 719.021 153.6 280.7 -56.8 64 65 1 0.87 0.027 BAR78 696399.682 4547405.601 719.081 153.6 280.7 56.8 64 65 1 0.87 0.027 BAR79 69602.231 4547495.001 719.081 153.6 280.7 56.8 64 65 1 0.87 0.027 BAR79 69602.234 4547492.07 714.01 153 288.4 45.4 WeightCantiterrectors BAR80 696439.106 4547392.64 706.637 264.3 285 49.5 197 99 2 1.73 0.581 BAR80												
BAR77 696309.023 4547302.096 719.927 191.8 285 -45 46 48 2 1.73 0.107 84 32 1.087 0.429 89 95 6 5.20 0.132 89 95 6 5.20 0.132 98 99 1 0.87 0.076 118 119 1 0.87 0.076 1.13 143 140 0.87 0.227 7 76 6 6.51 0.87 0.351 112 116 4 3.46 0.114 127 126 1 0.87 0.076 112 15.3 28.8 45.4 WoignRear Intersection BAR79 696202.233 4574539.7 714.01 153 28.8 45.4 97 99 2 1.73 0.561 BAR80 696429.104 457392.664 708.637 266.3 285 -45.1 97 99 2 1.73 0.561												
BAR78 695369.682 454749.001 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.013 BAR78 695369.682 454749.001 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.037 BAR78 695369.682 454749.001 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.037 BAR79 69502.231 4547539.7 714.01 153 288.8 -45.4 Moi ignificant intersections BAR80 69502.233 454745.201 711.937 150.6 284.2 -45.1 9 2 1.73 0.328 BAR80 69502.233 454745.201 711.937 150.6 284.2 -45.1 9 2 1.73 0.328 BAR80 69502.233 454745.201 711.937 150.6 284.2 -45.1 9 2 1.73 0.37 BAR81 695433.106 4547326.04 70						205	45					
BAR78 696369.682 4547449.601 719.081 153.6 280.7 56.8 64 65 1 0.87 0.076 BAR78 696369.682 4547449.601 719.081 153.6 280.7 56.8 64 65 1 0.87 0.032 BAR78 696309.682 4547449.601 719.081 153.6 280.7 56.8 64 65 1 0.87 0.032 BAR79 696024.291 4547530.7 714.01 153 288.8 -45.4 No significant interactions No againficant interactions No again interactions	BAR//	696369.023	4547502.096	/19.92/	191.8	285	-45					
BAR78: 696369.682 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.038 BAR78: 696369.682 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.038 BAR78: 696369.682 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.038 BAR79: 696024.291 4547530.7 714.01 153 288.8 -45.4 No significant intersections BAR80: 696027.233 45474301 711.937 155.6 284.2 -45.1 97 9 2 1.73 0.561 BAR81 696439.106 454739.0 714.01 153 288.8 -45.4 No significant intersections - BAR80 696027.233 4547443.01 711.937 155.6 284.2 -51 112 113 1 0.87 0.214 BAR81 696439.106 4												
BAR78 696369.582 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.227 BAR78 696369.582 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.287 BAR78 696369.582 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.038 BAR79 696024.291 4547350.7 714.01 153 288.8 -45.4 Woignifaunt intersections BAR81 696402.233 4547445.301 711.937 150.6 284.2 -45.1 97 92 1.73 0.561 BAR81 696439.106 4547352.664 708.637 264.3 285 -49.5 112 113 0.87 0.214 142 143 1 0.87 0.214 173 0.866 0.178 142 143 1 0.87 0.214 18 15.59 0.22												
HA3 144 1 0.87 2.446 175 176 1 0.87 0.227 BAR78 696369.682 4547449.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.351 BAR79 696324.291 4547539.7 714.01 153 288.8 -45.4 No significant intersections BAR80 696002.233 4547539.7 714.01 153 288.8 -45.4 No significant intersections BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.028 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.028 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 12 113 1 0.87 0.028 BAR81 696439.106 4547392.664 706.67 285.2								98	99	1	0.87	0.076
BAR78 696369.682 4547499.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.277 BAR78 696369.682 4547499.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.088 112 116 4 3.46 0.113 129 130 1 0.87 0.076 BAR79 696024.291 4547539.7 714.01 153 288.8 -45.4 Molignificant intersections Head 10.87 0.031 BAR80 696022.33 454743.301 711.937 150.6 284.2 445.1 Nolspinfcant intersections BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.214 146 147 1 0.87 0.214 1.33 10.87 0.214 146 147 1 0.87 0.214 1.35 0.27 225 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>118</td><td>119</td><td>1</td><td>0.87</td><td>0.113</td></td<>								118	119	1	0.87	0.113
BAR78 696369.682 454749.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.088 BAR78 696369.682 454749.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.088 BAR79 696024.291 4547539.7 714.01 153 286.8 45.4 No significant intersections BAR80 696002.233 4547465.301 711.937 150.6 284.2 45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 49.5 112 113 0.87 0.113 BAR81 696484.807 4547392.664 708.637 264.3 285 49.5 112 113 0.87 0.214 146 147 1 0.87 0.214 146 147 1 0.87 0.214 146 147 1 0.87 0.238 0.234								143	144	1	0.87	2.446
BAR78 696369.682 454749.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.088 BAR78 696369.682 454749.601 719.081 153.6 280.7 -56.8 64 65 1 0.87 0.088 BAR79 696024.291 4547539.7 714.01 153 286.8 45.4 No significant intersections BAR80 696002.233 4547465.301 711.937 150.6 284.2 45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 49.5 112 113 0.87 0.113 BAR81 696484.807 4547392.664 708.637 264.3 285 49.5 112 113 0.87 0.214 146 147 1 0.87 0.214 146 147 1 0.87 0.214 146 147 1 0.87 0.238 0.234								175	176	1	0.87	0.227
BAR90 696024.291 454739.7 714.01 153 288.8 45.4 105 1.0.87 0.018 BAR90 696024.291 454739.7 714.01 153 288.8 45.4 No significant interactions: 1.0.87 0.038 BAR80 69602.233 4547445.301 711.937 150.6 284.2 45.1 97 99 2 1.73 0.038 BAR80 69603.106 4547392.664 708.637 264.3 285 49.5 112 113 1 0.87 0.018 BAR81 696439.106 4547392.664 708.637 264.3 285 49.5 112 113 1 0.87 0.0214 146 147 1 0.87 0.214 146 147 1 0.87 0.214 173 1 0.87 0.234 1 0.87 0.234 186 192 6 5.20 0.326 0.326 0.326 0.326 0.326 0.326<	BAR78	696369.682	4547449.601	719.081	153.6	280.7	-56.8					
BAR82 696024.291 4547539.7 714.01 153 288.8 -45.4			2									
BAR?0 696024.291 4547539.7 714.01 153 288.8 -45.4 No significant intersections BAR80 69602.323 4547445.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR80 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.013 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.013 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.021 BAR82 696438.07 4547392.664 708.637 264.3 285 -49.5 172 10.87 0.133 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 177 273 1 0.87 0.021 BAR82 696484.807												
BAR?9 696024.291 4547539.7 714.01 153 288.8 -45.4 Mo significant intersections BAR80 696002.233 4547445.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.013 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.013 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.021 BAR82 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.021 BAR82 696438.807 4547392.664 708.637 264.3 286 214 18 15.59 0.274 BAR82 696484.807 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BAR79 696024.291 4547330.7 714.01 153 288.8 45.4 No significant intersections BAR80 696024.291 454745.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR81 696402.233 4547465.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.028 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.214 HA 142 143 1 0.87 0.214 148 15.59 0.274 HA 153 10 8.66 0.178 1.087 0.837 0.326 231 1 0.87 0.326 HA 16 147 1 0.87 0.378												
BAR79 696024.291 454739.7 714.01 153 288.8 -45.4 No significant intersections BAR80 696002.233 4547445.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 0.87 0.113 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 0.87 0.113 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 0.87 0.214 142 143 1 0.87 0.214 173 183 10 8.66 0.178 156 192 6 5.20 0.326 196 214 18 15.59 0.274 230 231 1 0.87 0.607 285.2 286.1 -49.5 172 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BAR80 696002.233 4547445.301 711.937 150.6 284.2 -45.1 97 99 2 1.73 0.561 BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.113 Ints 115 116 1 0.87 0.214 143 1 0.87 0.214 142 143 1 0.87 0.214 143 1 0.87 0.214 146 147 1 0.87 0.214 143 1 0.87 0.214 146 147 1 0.87 0.26 196 214 18 15.9 0.274 230 231 1 0.87 0.67 285.2 286.1 -49.5 172 173 0.87 0.63 249 252 3 2.60 2.900 183 14 0.87 0.050 100 10 0.87								149				0.328
BAR81 696439.106 4547392.664 708.637 264.3 285 -49.5 112 113 1 0.87 0.113 115 116 1 0.87 0.088 142 143 1 0.87 0.0214 146 147 1 0.87 0.214 143 10 8.66 0.7326 173 183 100 8.66 0.7326 196 2.14 18 15.59 0.274 173 183 100 8.66 0.7326 196 2.14 18 15.59 0.274 230 2.214 18 15.59 0.274 0.87 0.139 249 252 3 2.60 2.900 10.87 0.139 161 0.87 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.100 179 180 1 0.87 0.050 190 191 1 0.87 0.060										-		
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 0.87 0.088 Incl. 251 252 1 0.87 0.214 146 147 1 0.87 0.214 173 183 10 8.66 0.178 186 192 6 5.20 0.326 196 214 18 15.5 0.274 230 231 1 0.87 8.676 234 235 1 0.87 0.139 249 252 3 2.60 2.900 incl. 251 252 1 0.87 0.050 199 177 173 1 0.87 0.050 190 191 0.87 0.050 190 1 0.87 0.063 190 191 1 0.87 0.063 100 1 0.87 0.063 190 191 1 0.87 0.063 100 1 0.87 0.063 <												
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 18 10 0.87 0.214 116 147 1 0.87 0.214 18 10 8.6 0.178 126 121 12 6 5.20 0.326 196 214 18 15.59 0.274 230 231 1 0.87 8.676 234 235 1 0.87 0.139 249 252 3 2.60 2.900 121 1.87 8.638 180 10 0.87 0.507 285.2 286.1 -49.5 172 173 1 0.87 0.050 183 184 1 0.87 0.050 179 180 1 0.87 0.050 190 191 1 0.87 0.050 199 190 191 1 0.87 0.050 120 201 211 1 0.87 0.052 125 1.6 1 0.87 0.052 <t< td=""><td>BAR81</td><td>696439.106</td><td>4547392.664</td><td>708.637</td><td>264.3</td><td>285</td><td>-49.5</td><td></td><td></td><td></td><td></td><td></td></t<>	BAR81	696439.106	4547392.664	708.637	264.3	285	-49.5					
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 173 1 0.87 0.214 10 8.66 0.178 163 102 6 5.00 0.326 196 214 18 15.59 0.274 230 231 1 0.87 8.676 234 235 1 0.87 0.139 249 252 3 2.60 2.900 incl. 251 252 1 0.87 8.678 100 171 173 1 0.87 8.638 101 183 184 1 0.87 0.050 102 217 1 0.87 0.050 100 191 1 0.87 0.050 100 191 1 0.87 0.050 101 11 0.87 0.058 100 11 0.87 0.058 101 11 0.87 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>116</td> <td></td> <td></td> <td></td>									116			
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.139 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 Incl. 252 3 2.60 2.900 2.91 1 0.87 0.050 Incl. 251 12 173 1 0.87 0.050 Incl. 260 2.907 5 4.33 0.038 Incl. 206 207 1 0.87 0.050 Incl. 206 207 5 4.33 0.308 Incl. 206 207 5 4.33 0.308 Incl. 206 207 1 0.87 0.063 Incl. 210 211 1 0.87 0.088 Incl. 226 227 1 0.87 0.282 Incl. 226 227 1 0.87 0.282 Incl. 226 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>142</td> <td>143</td> <td>1</td> <td></td> <td>0.214</td>								142	143	1		0.214
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.0326 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 incl. 202 207 5 4.33 0.050 incl. 206 207 5 4.33 0.366 incl. 202 207 5 4.33 0.306 incl. 206 207 1 0.87 0.050 incl. 206 207 5 4.33 0.306 incl. 206 207 1 0.87 0.050 incl. 206 207 1 0.87 0.050 incl. 206 207 1 0.87 0.058 215 216 1 0.87 0.058 226 227 1 0.87 0.277 233 234 1 0.87 0.277 233 236								146	147	1	0.87	0.214
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.139 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 202 207 5 4.33 0.050 incl. 202 207 5 4.33 0.063 incl. 206 207 1 0.87 1.009 incl. 206 207 1 0.87 0.088 215 216 1 0.87 0.274 216 211 1 0.87 0.287 217 213 214 1 0.87 0.277 233 234 1 0.87 0.277 234 1								173	183	10	8.66	0.178
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.139 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 251 252 1 0.87 0.050 incl. 202 207 5 4.33 0.050 incl. 202 207 5 4.33 0.063 incl. 206 207 1 0.87 1.009 incl. 206 207 1 0.87 0.088 215 216 1 0.87 0.274 216 211 1 0.87 0.287 217 213 214 1 0.87 0.277 233 234 1 0.87 0.277 234 1								186	192	6	5.20	0.326
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.139 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 Incl. 251 252 3 0.607 0.050 179 180 1 0.87 0.050 Insl 183 184 1 0.87 0.050 183 0.87 0.050 Insl 183 184 1 0.87 0.050 199 191 0.87 0.050 Insl 183 184 1 0.87 0.050 199 191 0.87 0.063 Insl 184 1 0.87 0.063 106.1 0.87 0.063 Incl. 206 207 1 0.87 0.088 210 211 1 0.87 0.088 Incl. 226 227 1 0.87 0.252 233 234 1 0.87 0.252 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>196</td> <td>214</td> <td></td> <td></td> <td></td>								196	214			
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 12 173 1 0.87 0.050 Incl. 251 252 1 0.87 0.050 Incl. 179 180 1 0.87 0.050 Incl. 262 207 1 0.87 0.050 Incl. 100 11 0.87 0.050 Incl. 262 207 1 0.87 0.050 Incl. 190 191 1 0.87 0.050 Incl. 202 207 5 4.33 0.308 Incl. 206 207 1 0.87 0.063 Incl. 206 207 1 0.87 0.088 Incl. 206 207 1 0.87 0.088 Incl. 206 207 1 0.87 0.088 Incl. 206 207 1 0.87 0.277 Incl. 206 207 1 0.87 0.252												I
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 8.638 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 179 180 1 0.87 0.050 190 191 1 0.87 0.063 190 191 1 0.87 0.063 100 191 1 0.87 0.063 190 191 1 0.87 0.063 100 111 0.87 0.063 190 191 1 0.87 0.063 1.009 101 1.087 0.088 111 1 0.87 0.088 1.009 111 1 0.87 0.088 111 1 0.87 0.087 1.09 1.09 111 1 0.87 0.277 180 18 1 0.87 0.277 233 234 1 0.87 0.277 181 1 1												
incl. 251 252 1 0.87 8.638 BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 179 180 1 0.87 0.050 179 180 1 0.87 0.050 183 184 1 0.87 0.050 190 191 1 0.87 0.050 190 191 1 0.87 0.050 190 191 1 0.87 0.050 190 191 1 0.87 0.050 190 191 1 0.87 0.050 102 202 207 5 4.33 0.308 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 10087 0.088 1009 10087 0.087 0.277 233 234 1 0.87 0.252 233 1 0.87 0												
BAR82 696484.807 4547376.048 706.07 285.2 286.1 -49.5 172 173 1 0.87 0.050 179 180 1 0.87 0.050 183 184 1 0.87 0.050 190 191 1 0.87 0.063 190 191 1 0.87 0.063 202 207 5 4.33 0.308 1009 210 211 1 0.87 0.088 210 211 1 0.87 0.088 215 216 1 0.87 0.277 233 234 1 0.87 0.277 233 234 1 0.87 0.731 242 243 1 0.87 0.731 242 243 1 0.87 0.113 242 253 1 0.87 0.113 252 253 1 0.87 0.113							incl					
17918010.870.10118318410.870.05019019110.870.06320220754.330.30820220754.330.30821021110.871.00921521610.870.08822622710.870.27723323410.870.27723823910.870.17124224310.870.73124925010.870.11325225310.874.515	DAD03	606404.007	45 47276 040	700 07	205.2	206.4						
183 184 1 0.87 0.050 190 191 1 0.87 0.063 202 207 5 4.33 0.308 incl. 206 207 1 0.87 1.009 210 211 1 0.87 0.088 215 216 1 0.87 0.287 233 234 1 0.87 0.277 233 234 1 0.87 0.252 242 243 1 0.87 0.277 242 243 1 0.87 0.252 242 243 1 0.87 0.273 242 243 1 0.87 0.252 242 243 1 0.87 0.731 249 250 1 0.87 0.113 249 253 1 0.87 0.113 252 253 1 0.87 0.113	BAR82	090484.80/	454/3/6.048	/0.0/	285.2	280.1	-49.5					
19019110.870.06320220754.330.30820220710.871.00921021110.870.08821521610.870.08822622710.870.27723323410.870.25223823910.870.73124224310.870.73124925010.870.11325225310.874.515												I
incl.20220754.330.308incl.20620710.871.00921021110.870.08821521610.870.28822622710.870.27723323410.870.25223823910.870.73124224310.870.73124925010.870.13325225310.874.515												
incl. 206 207 1 0.87 1.009 210 211 1 0.87 0.088 215 216 1 0.87 0.088 226 227 1 0.87 0.277 233 234 1 0.87 0.272 238 239 1 0.87 0.252 238 239 1 0.87 0.177 242 243 1 0.87 0.131 249 250 1 0.87 0.13												
21021110.870.08821521610.870.08822622710.870.27723323410.870.25223823910.870.17724224310.870.73124925010.870.11325225310.874.515												
21521610.870.08822622710.870.27723323410.870.25223823910.870.17724224310.870.73124925010.870.11325225310.874.515							incl.					I
22622710.870.27723323410.870.25223823910.870.17724224310.870.73124925010.870.11325225310.874.515								210	211	1	0.87	0.088
23323410.870.25223823910.870.17724224310.870.73124925010.870.11325225310.874.515								215	216	1	0.87	0.088
23323410.870.25223823910.870.17724224310.870.73124925010.870.11325225310.874.515								226	227	1	0.87	0.277
23823910.870.17724224310.870.73124925010.870.11325225310.874.515										1		
24224310.870.73124925010.870.11325225310.874.515												
24925010.870.11325225310.874.515												
252 253 1 0.87 4.515												
												I
	I							267	268	T	0.87	0.063

							272	273	1	0.87	0.177
							272	273	1	0.87	0.177
BAR83	696415.844	4547417.577	711.975	473.5	286.45	-53.26	102	103	1	0.87	0.580
27 11 100	0001201011	10171271077	, 110, 0		2001.10	55125	121	122	1	0.87	0.126
							136	137	1	0.87	0.429
							147	148	1	0.87	0.139
							156	160	4	3.46	0.063
							163	165	2	1.73	0.082
							172	176	4	3.46	1.230
						incl.	174	176	2	1.73	2.428
							183	185	2	1.73	0.240
							189	195	6	5.20	0.053
							209	210	1	0.87	0.101
							222	225	3	2.60	0.059
							242	243	1	0.87	0.277
							294	295	1	0.87	0.050
							297	298	1	0.87	2.434
							354	355	1	0.87	0.189
							358	359	1	0.87	0.290
							367	368	1	0.87	0.050
							408	409	1	0.87	9.660
							414	415	1	0.87	0.076
							441	443	2	1.73	0.265
							453	455	2	1.73	0.227
							466	468	2	1.73	0.101
BAR84	696505.501	4547310.674	703.833	341.5	292.09	-44.65	161	162	1	0.87	0.177
							169	170	1	0.87	0.101
							213	216	3	2.60	0.092
							221	223	2	1.73	0.202
							226	227	1	0.87	0.139
							230	231	1	0.87	0.050
							235	236	1	0.87	0.050
							241	242	1	0.87	0.050
							265	266	1	0.87	0.214
							303	304	1	0.87	0.113
							307	311	4	3.46	0.131
							332	333	1	0.87	1.122
BAR85	696411.84	4546921.434	697.203	401.8	286.63	-54.37	254	255	1	0.87	0.050
							257	258	1	0.87	0.277
							263	264	1	0.87	0.050
							269	270	1	0.87	0.315
							278	279	1	0.87	0.101
							291	292	1	0.87	0.063
							303	305	2	1.73	0.195
							308	309	1	0.87	0.088
							311	312	1	0.87	0.076
							315	317	2	1.73	0.643
						incl.	316	317	1	0.87	1.160
						incl.			1 1 1		

1											
							330	331	1	0.87	0.101
							334	337	3	2.60	0.534
						incl.	335	336	1	0.87	1.236
							347	349	2	1.73	0.234
							354	355	1	0.87	0.151
							358	359	1	0.87	2.774
							371	372	1	0.87	0.290
							381	382	1	0.87	1.967
							393	394	1	0.87	0.101
BAR86	696366.832	4546984.564	699.46	418.5	285.87	-59.29	183	184	1	0.87	0.946
							203	208	5	4.33	0.124
							253	254	1	0.87	6.810
							258	259	1	0.87	8.701
							284	285	1	0.87	0.050
							290	291	1	0.87	1.034
							296	297	1	0.87	0.076
							300	302	2	1.73	0.227
							315	316	1	0.87	0.050
							319	320	1	0.87	0.113
							333	334	1	0.87	3.569
							399	400	1	0.87	0.303
BAR87	696422.236	4547229.283	706.192	359.6	283.51	-53.8	136	137	1	0.87	0.113
							173	174	1	0.87	0.050
							184	185	1	0.87	0.214
							190	191	1	0.87	0.189
							195	197	2	1.73	0.050
							211	212	1	0.87	0.101
							238	239	1	0.87	0.076
							251	252	1	0.87	0.101
							261	262	1	0.87	0.076
							269	270	1	0.87	0.101
							277	280	3	2.60	0.055
							283	284	1	0.87	0.050
							289	290	1	0.87	0.151
							302	303	1	0.87	0.076
							306	307	1	0.87	0.101
							331	332	1	0.87	0.063
							335	336	1	0.87	0.441
BD001	696,228.390	4,547,289.650	709.49	12.00	295	-40	3.7	4.4	0.7	0.61	2.902
BD002	696,236.176	4,547,285.220	709.16	12.00	295	-40		No	significant inter	sections	
BD003	696,219.455	4,547,276.507	709.50	12.10	295	-40			significant inter	sections	
BD004	696,227.716	4,547,272.545	709.21	12.05	295	-40	1.1	2.1	1	0.87	0.518
BD005	696,209.607	4,547,265.317	709.64	12.15	295	-40			significant inter	sections	
BD006	696,218.003	4,547,261.186	709.24	12.10	295	-40	7.5	11.2	3.7	3.20	0.145
BD007	696,263.155	4,547,299.582	709.53	12.10	295	-40			significant inter		
BD008	696,272.158	4,547,294.816	709.79	12.15	295	-40	2.4	3.3	0.9	0.78	1.391
							8	8.9	0.9	0.78	3.418
BD009				40.05				No	significant inter	coctions	
	696,280.363	4,547,290.809	709.74	12.25	295	-40					
BD010 BD011	696,280.363 696,289.699 696,269.742	4,547,290.809 4,547,286.696 4,547,313.403	709.74 709.33 709.70	12.25 12.10 12.10	295 295 295	-40 -40 -40			significant inter		

				10.15							
BD012	696,277.364	4,547,309.880	709.53	12.15	295	-40			significant inte		
BD013	696,285.806	4,547,306.074	709.74	12.45	295	-40			significant inte		
BD014	696,294.725	4,547,301.960	709.99	12.10	295	-40			significant inte		
BD015	696,276.229	4,547,328.129	709.84	12.00	295	-40	3.7	12	8.3	7.19	0.140
BD016	696,284.590	4,547,323.678	709.82	12.10	295	-40	3.3	4.4	1.1	0.95	0.802
BD017	696,292.297	4,547,320.175	709.65	12.15	295	-40	3.65	4.8	1.15	1.00	0.050
BD018	696,300.921	4,547,316.113	710.26	12.20	295	-40	8.9	9.9	1	0.87	0.086
BD019	696,286.514	4,547,339.431	709.52	12.20	295	-40	5.1	6.4	1.3	1.13	0.189
BD019							11.1	12.2	1.1	0.95	0.147
BD020	696,293.768	4,547,335.745	709.74	12.20	295	-40	0	6.4	6.4	5.54	0.146
BD021	696,300.863	4,547,332.089	709.92	12.10	295	-40	2.1	3.1	1	0.87	0.076
							9.1	10.9	1.8	1.56	0.054
BD022	696,309.428	4,547,327.825	709.87	12.30	295	-40			significant inte		
BD023	696,295.389	4,547,349.619	709.86	12.00	295	-40			significant inte		
BD024	696,303.248	4,547,346.897	709.90	12.30	295	-40	7.05	8.1	1.05	0.91	1.254
BD025	696,311.522	4,547,342.453	709.99	12.10	295	-40			significant inte		
BD026	696,319.792	4,547,338.076	710.36	12.30	295	-40			significant inte		0.107
BD027	696,284.976	4,547,230.076	710.51	135.50	295	-45	4.15	6.35	2.2	1.91	0.107
							11.85	12.9	1.05	0.91	0.090
						incl.	20.15	21.05	0.9	0.78	1.289
							28.8	30	1.2	1.04	1.243
							53.75	56.75	3	2.60	0.440
							60.9	61.9	1	0.87	0.094
							72.05	75.15	3.1	2.68	0.104
							78.7	79.7	1	0.87	0.259
							94.3	102.45	8.15	7.06	0.197
							108.2	109.2	1	0.87	0.152
	606 266 042	4 5 46 744 220	694.72	270.00	285	-55	119.5	120.6	1.1	0.95	0.098
BD028	696,266.942	4,546,744.239	694.72	370.00	285	-55	17.55	18.7	1.15	1.00	0.140
							170.7	171.7	1	0.87	0.051
							222.65	224.65	2	1.73	0.139
						in al	225.65	237.8	12.15	10.52	0.271
						incl.	230.8	231.8	1	0.87	1.513
							246.15	252.25	6.1	5.28	0.342
						incl.	246.15	247.15	1	0.87	1.339
							257.4	259.4	2	1.73	0.139
							272.15	273.15	1	0.87	0.111
							286.5	288.5	2	1.73	0.349
	COC 272 707	4 5 46 906 969	COF 22	205.20	205	63	317	318	1	0.87	1.289
BD029	696,273.795	4,546,806.860	695.08	365.20	285	-63	191.4	192.4	1	0.87	0.166
							227.75	228.75	1	0.87	0.053
							249.35	250.35	1	0.87	0.634
							265.6	266.65	1.05	0.91	2.373
							272.45	273.45	1	0.87	0.291
						in -1	277.15	281	3.85	3.33	0.347
						incl.	280 201 FF	281	1	0.87	1.263
							301.55	302.55	1	0.87	0.059
							315.75	316.75	1	0.87	4.765
							320.5	321.5	1	0.87	0.176
I							335.4	336.4	1	0.87	1.456

B0031 096,787.701 A546,937.517 701.94 347.00 288 -1 1.05 0.051 0.052 B0031 696,787.701 A546,937.517 701.94 347.00 288 -7.1 1.323 2.136 1.1 0.95 0.139 B0031 696,787.701 A546,937.517 701.94 347.00 288 -7.1 232.45 1.1 0.95 0.139 B0031 696,787.701 A546,698.194 091.96 281.00 285 297.71 1.05 0.19 0.77.8 B0031 696,710.745 A546,698.194 091.96 281.00 285 -9 7.13 1.057 0.021 B0031 696,710.745 A546,698.194 091.96 281.00 285 -9 7.13 1.057 0.27.1 0.28.1 B0031 696,710.785 246,710.785 247.7 0.38 1.067 0.21.0 1.56.95 1.067 0.21.0 B0031 696,710.785 246.77 0.23.7 2.2.1.73 <th></th>												
362.2 352.2 2 1.73 1.247 80030 96.287.201 4.546.552.317 702.54 347.00 28 7.1 195.4 195.9 1.1 0.95 0.319 80030 96.287.201 4.546.552.317 702.54 347.00 28 7.1 195.4 195.9 1.1 0.95 0.319 22.04 22.45 1.05 0.31 0.95 0.319 0.278 28.05 1.1 0.95 0.339 1 0.97 0.081 28.05 1 0.97 0.081 28.05 1 0.97 0.030 28.07 28.03 1.0 0.97 0.030 1.1 0.97 0.031 1.1 0.97 0.031 1.1 0.97 0.031 1.1 0.97 0.231 1.1 0.97 1.1 0.97 1.1 0.97 1.1 0.97 1.1 0.97 1.1 0.97 1.1 0.97 1.1 0.97 1.237 1.1 0.97 1.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>339.85</td><td>340.9</td><td>1.05</td><td>0.91</td><td>0.262</td></t<>								339.85	340.9	1.05	0.91	0.262
BO030 66(287.201 4,546,552.317 701.94 347.01 285 71 105.8 135.0 11 0.05 11.35 B0030 66(287.201 4,546,552.317 701.94 347.00 285 71 105.8 156.0 11 0.05 0.135 221.05 211.05 11.0 0.05 0.135 222.5 12.85 1.1 0.05 0.135 20101 696,210.743 4,546,662.104 691.36 287.00 285 -9 7.4 8.4 1 0.027 0.021 80031 696,210.743 4,546,690.304 691.36 281.00 285 -9 7.4 8.4 1 0.027 0.021 80032 696,210.743 4,546,570.302 691.33 281.00 285 -9 7.4 8.4 1 0.027 0.021 80032 696,180.392 4,546,570.302 691.33 299.00 285 5 0.05 1 0.070 0.038 2.274								350.2			0.87	0.364
B0030 66(387.201 4,546,852.317 701.94 347.60 28 71 105.8 105.9 1.1 0.05 0.339 223.45 224.5 1.05 0.91 0.95 0.339 223.45 224.5 1.05 0.91 0.97.3 223.45 224.5 1.05 0.91 0.77.3 1.09 0.058 20011 0.96,210.743 4,546,683.104 691.36 281.00 285 -97 7.4 8.4 1 0.027 0.232 1.15 0.85 0.339 0.469 0.232 1.15 0.85 0.358 1.007 0.223 0.155 1.007 0.223 1.1 0.05 0.339 1.1 0.97 0.223 1.15 0.85 0.358 1.007 0.223 1.15 0.85 0.358 1.1 0.97 0.223 1.15 0.25 3.75 5.27 2.37 2.35 1.1 0.35 0.25 3.75 5.27 2.37 2.35 2.26 2.01 1.1								356.2		2		
B0031 696,310.743 4,546,668.104 691.36 281.00 285 732.45 212.65 1.1 0.67 0.73 B0031 696,310.743 4,546,668.104 691.36 281.00 285 782.0 1.0 0.87 0.091 B0031 696,310.743 4,546,668.104 691.36 281.00 285 91 7.4 8.4 1 0.87 0.039 B0031 696,310.743 4,546,668.104 691.36 281.00 285 91 7.4 8.4 1 0.87 0.023 B0031 696,310.743 4,546,668.104 691.36 281.00 285 91 7.4 8.4 1 0.87 0.023 B0031 696,310.743 696.313 291.00 285 55 206.3 1 0.67 3.383 B0032 696,180.392 4,546,570.302 699.13 299.00 285 55 207 203 10.05 0.070 B0032 696,180.392 4,546,570							incl.	356.2	357.2	1	0.87	2.061
80031 666,180.392 4,546,567.0502 689,240 285 -99 7.4 8.4 1 0.87 0.023 80031 666,210.743 4,546,568.104 691,36 281.00 285 -99 7.4 8.4 1 0.87 0.0232 80031 666,210.743 4,546,568.104 691,36 281.00 285 -99 7.4 8.4 1 0.87 0.0232 80031 666,210.743 4,546,568.104 691,36 281.00 285 -99 7.4 8.4 1 0.87 0.0232 80032 666,180.392 4,546,570.692 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.233 80032 666,180.392 4,546,570.692 689.13 298.00 285 -55 206 207.1 1.1 0.95 0.233 80033 696,180.392 4,546,570.692 689.13 298.00 285 -55 206 207.1 1.1 0.95 <td>BD030</td> <td>696,287.201</td> <td>4,546,952.517</td> <td>701.94</td> <td>347.00</td> <td>285</td> <td>-71</td> <td>195.8</td> <td>196.9</td> <td>1.1</td> <td>0.95</td> <td>0.135</td>	BD030	696,287.201	4,546,952.517	701.94	347.00	285	-71	195.8	196.9	1.1	0.95	0.135
80031 696,210,743 4,546,668,104 691.36 281.00 285 59 7.4 8.4 1 0.87 0.003 80031 696,210,743 4,546,668,104 691.36 281.00 285 59 7.4 8.4 1 0.87 0.023 80031 696,210,743 4,546,668,104 691.36 281.00 285 59 7.4 8.4 1 0.87 0.232 80031 696,210,743 4,546,668,104 691.36 281.00 285 59 7.4 8.4 1 0.87 0.232 80032 698,180.382 4,546,608,104 691.36 281.00 285 59 7.6 1.0 0.87 0.333 80032 698,180.382 4,546,509.002 689.13 299.00 285 -55 706 707.1 1.1 0.95 0.073 210.0 223.0 223.0 223.0 223.1 223.6 2 5.3 0.6 0.803 224.6 1.0								212.55	213.65	1.1	0.95	0.339
B0031 696,210.743 4,546,668.104 691.36 281.00 285 -99 7.4 8.4 1 0.67 0.039 B0031 696,210.743 4,546,668.104 691.36 281.00 285 -99 7.4 8.4 1 0.67 0.037 B0033 696,210.743 4,546,668.104 691.36 281.00 285 -99 7.4 8.4 1 0.67 0.037 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 205 1.0 0.97 1.459 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 21 0.53 0.53 1 0.87 0.583 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -52 206 21 23.58 21.0 0.37 0.583 B0033 696,180.234 4,546,570.902 689.13 299.00 285 206 1								223.45	224.5	1.05	0.91	0.773
BD031 696,210,743 4.546,668,104 691,36 281,00 285 -99 74 8.4 1 0.87 0.232 BD031 696,210,743 4.546,668,104 691,36 281,00 285 -99 74 8.4 1 0.87 0.232 BD031 696,210,743 4.546,668,104 691,36 281,00 285 -12 0.87 0.231 0.075 228,75 230,75 2 1,73 1,549 BD032 696,180,392 4.546,570,902 689,13 299,00 285 7.06 207,1 1.1 0.95 0.039 BD032 696,180,392 4.546,570,902 689,13 299,00 285 7.06 207,1 1.1 0.95 0.039 BD033 696,180,392 4.546,570,902 689,13 299,00 285 7.06 207,1 1.1 0.95 0.053 BD033 696,196,223 4.546,570,902 689,13 299,00 285 7.06 207,1 1.10								263.05	270.2	7.15	6.19	0.278
B0031 696,210 743 4,546,668 104 691,36 281.00 285 -59 7.4 8.4 1 0.87 0.232 180931 696,210 743 4,546,668 104 691,36 281.00 285 -59 7.4 8.4 1 0.87 0.232 180 55 186,95 1 0.87 0.232 23.75 23.075 2 1.73 1.549 23.8 23.8 2.08,75 2.55 7.55 4.55 0.383 251.75 257 5.25 4.55 0.383 2.28.75 2.30 2.65 1.1 0.95 0.707 263.9 265 1.1 0.95 0.77 1.533 1.6 2.27.7 2.30.75 1 0.87 0.353 80032 696,180.392 4.546,605.800 689.13 2.29.90 285 -55 207 1 0.87 0.353 180033 696,180.392 4.546,605.800 689.13 229.90 285 3.10 0.8								281.5	282.5	1	0.87	0.091
B0031 696,210.743 4,546,668.104 691.36 281.00 285 -59 7.4 8.4 1 0.87 0.220 185.95 186.95 1 0.87 0.210 195.5 20.5 1 0.87 0.220 285.8 230.75 2 1.73 1.549 235.8 236.8 1 0.87 0.230 280.9 280.9 280.9 1 0.87 0.230 10.87 0.230 280.9 280.9 280.9 280.9 280.9 281.9 0.87 0.230 80032 696,180.392 4,546,570.902 689.13 299.00 285 -56 266 207.1 1.0 0.55 0.250 10032 696,180.392 4,546,570.902 689.13 299.00 285 -36 207.1 1.0 0.57 0.58 217.4 213.6 6.2 5.37 0.88 1.1 0.67 0.69 220.1 220.5 1.0 0								284.05	285.05	1	0.87	0.058
B0033 696,180.322 4,546,653.880 689.54 322.70 285 -1 0.87 0.075 B0033 696,180.324 4,546,570.902 689.13 299.00 285 -25 11 0.95 0.23 B0033 696,180.332 4,546,570.902 689.13 299.00 285 -5 06 207.1 11 0.95 0.753 B0034 696,180.332 4,546,570.902 689.13 299.00 285 -5 0.6 207.1 11 0.95 0.753 B0033 696,180.332 4,546,570.902 689.13 299.00 285 -5 0.6 207.1 11 0.95 0.070 2100 225 -5 206 207.1 11 0.87 0.533 211 225 75 220.6 11 0.87 0.538 3.42 0.189 211 211 211 211 211 211 211 211 0.95 0.062								336.3	337.3	1	0.87	0.499
B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.87 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.873 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.873 B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.070 100.1 217.9 230.5 5.25 3.05 2.4 0.37 0.583 100.1 217.9 230.5 3.05 2.4 0.37 0.583 100.1 217.1 218.1 1 0.027 1.383 217.1 218.5 3.05 2.44 0.385 3.42 0.639 217.2 218.1 1 0.57 2.257 3.	BD031	696,210.743	4,546,668.104	691.36	281.00	285	-59	7.4	8.4	1	0.87	0.232
BD032 696,180.392 4,546,570.302 689.13 299.00 285 -53 200.75 21.75 5.75 5.45 0.358 BD032 696,180.392 4,546,570.302 689.13 299.00 285 -55 200 207.1 1.1 0.95 0.070 BD033 696,180.392 4,546,570.302 689.13 299.00 285 -55 200 207.1 1.1 0.95 0.070 Incl. 228.75 230.75 1 0.87 1.523 Incl. 228.75 230.75 1 0.87 1.523 Incl. 228.75 230.75 1 0.87 1.523 Incl. 228.75 240.85 3.95 3.42 0.639 Incl. 228.75 1.945 1.1 0.95 0.061 Incl. 253.85 254.75 0.9 0.78 1.469 Incl. 253.85 254.75 0.9 0.78 1.69 Incl. 253.8								19.5	20.5	1	0.87	0.210
BD032 696,180.392 4,546,570.302 689.13 299.00 285 -55 200,75 25 45 0.383 BD032 696,180.392 4,546,570.302 689.13 299.00 285 -55 200 207.1 1.1 0.95 0.070 BD032 696,180.392 4,546,570.302 689.13 299.00 285 -55 200 207.1 1.1 0.95 0.070 Incl. 228.75 230.75 1 0.87 1.523 Incl. 228.75 230.75 1 0.87 1.523 Incl. 228.75 200.75 1 0.87 1.523 Incl. 228.75 200.85 3.95 3.42 0.690 Incl. 228.85 254.75 0.9 0.78 1.499 Incl. 253.85 254.75 0.9 0.78 1.499 Incl. 253.85 254.75 0.9 0.78 0.499 Incl. 253.85 254.75								185.95	186.95	1	0.87	0.075
BD032 696,180.392 4,546,570.902 689.13 299.00 285 -55 254,75 0.9 0.78 1.469 BD032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.023 BD032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.037 BD033 696,196.233 4,546,605.860 689.14 209.00 285 -51 207.5 210 8.1 0.82 3.383 BD033 696,196.223 4,546,605.860 689.64 322.70 285 51 210.5 2.2 1.1 0.95 0.002 BD033 696,196.223 4,546,605.860 689.64 322.70 285 51 101.75 112.5 0.92 1469 BD033 696,196.223 4,546,605.860 689.64 322.70 285 51 102.75 12.5 12.75 12.7								228.75		2		1.549
BD032 696,180.392 4,546,570.302 689.13 299.00 285 5.5 206 207.1 1.1 0.95 0.278 BD032 696,180.392 4,546,570.302 689.13 299.00 285 5.5 206 207.1 1.1 0.95 0.070 Incl. 227.4 233.6 6.2 5.37 0.583 Incl. 227.7 236.7 1.0 0.87 1.523 Incl. 229.05 1.1 0.87 1.523 Incl. 229.74 286.3 3.95 3.42 0.681 245.1 1.1 0.87 0.069 247.1 248.1 1 0.87 0.069 251.1 251.5 3.05 2.64 0.198 0.97 0.498 0.062 0.97 1.469 0.062 0.98 1.91.75 1.91.75 1.91.75 0.93 0.42 0.198 0.16.0 0.662 0.91 2.24.65 0.91 0.214 0.095 0.219 0.93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>235.8</td> <td>236.8</td> <td>1</td> <td></td> <td>3.383</td>								235.8	236.8	1		3.383
Incl. 253,85 254,75 0.9 0.78 1.469 BD032 696,180.392 4,546,570.302 689.13 299.00 285 55 206 207.1 1.1 0.95 0.273 BD032 696,180.392 4,546,570.302 689.13 299.00 285 55 206 207.1 1.1 0.95 0.273 IBD034 696,180.392 4,546,570.302 689.13 299.00 285 55 206 207.1 1.0 0.95 0.583 III 0.95 0.681 3.299.00 285 7.51 1.0.87 1.523 236.9 240.85 3.95 3.42 0.681 247.1 248.1 1 0.95 0.061 100.1 253.25 1.1 0.95 0.662 227.1 255.5 3.05 2.4 0.168 200.39 4,546,605.860 689.64 322.70 285 5.1 191.95 0.91 2.34 207.9 29.95 <								251.75		5.25		
BD032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.070 BD032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.070 L 227,4 233.6 6.2 5.37 0.583 1.13 0.82 3.383 235.8 226.8 1 0.82 3.383 236.8 1.0 0.82 0.681 243.9 246.5 1.1 0.95 0.0681 247.1 248.1 1 0.87 0.069 161. 253.8 251.5 3.05 2.64 0.198 0.062 249.9 20.05 2.21.1 0.65 0.319 0.062 207.9 208.8 1.9 1.65 0.319 21.25 21.59 3.95 3.42 0.187 0.223 22.465 4 3.42 0.187 0.224 22.45 1.05 0.319 21.25							incl.			0.9		
B0032 696,180.392 4,546,570.902 689.13 299.00 285 -55 206 207.1 1.1 0.95 0.070 207.4 233.6 6.62 5.37 0.583 1.523 236.8 1 0.82 3.383 246.9 240.85 3.295 3.42 0.639 243.9 245 1.1 0.95 0.0681 247.1 248.1 1 0.87 0.689 0.0681 247.1 248.1 1 0.87 0.069 247.1 248.1 1 0.87 0.069 252.1 255.15 3.05 254.75 0.9 0.78 1.469 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 193.85 210.05 2.2 1.91 0.095 207.9 209.8 1.91 1.65 0.319 1.65 0.319 212.95 216.9 3.95 3.42 0.187 220.05 2.24.05 4												
BD033 696,196,223 4,546,605,860 689,64 322.70 285 -51 109,87 1,523 BD033 696,196,223 4,546,605,860 689,64 322.70 285 -51 191,85 1,1 0,95 0,662 BD034 696,196,223 4,546,605,860 689,64 322.70 285 -51 191,75 192,85 1,1 0,95 0,061 BD034 696,196,223 4,546,605,860 689,64 322.70 285 -51 191,75 192,85 1,1 0,95 0,062 198,85 201,05 2,2 1,91 0,095 0,212 3,95 3,42 0,893 198,85 201,05 1,1 0,55 0,90 0,78 1,489 198,85 201,05 2,2 1,91 0,095 0,78 1,489 10,12 2,20 3,95 3,42 0,893 3,44 0,393 212,95 214,15 1,1 0,55 0,395 3,44 0,393 220,05 1,1 0,05 0,91 1,514 2,224	BD032	696.180.392	4.546.570.902	689.13	299.00	285	-55					
BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 122.85 3.42 0.639 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 102.85 2.54.75 0.9 0.78 1.469 BD034 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.055 0.061 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.05 0.062 Incl. 72.05 224.05 4 0.34 0.105 0.319 21.295 21.1 1.05 0.91 2.236 Incl. 72.05 224.05 4 3.46 0.332 239.95 241.1 1.05 0.91 2.236 Incl. 72.05 224.05 1.1 0.95 0.27 1.91 0.155 230.95 241 1.05 0.91 2.236 Incl. 72.05 1.74 1.727.4 1<		,	,,									
8D033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 1.4 0.95 0.081 200.9 240,81 3.95 3.42 0.639 243.9 245 1.1 0.87 0.069 272.1 285.15 3.05 2.64 0.198 247.1 248.1 1 0.87 0.069 8D033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 207.9 209.8 1.9 1.65 0.319 21.05 2.2 1.91 0.095 207.9 209.8 1.9 1.65 0.319 21.95 2.10 0.92 2.38 210.5 224.05 224.05 2.2 1.91 0.052 2.21.1 1.05 0.91 2.386 220.6 224.05 2.24.05 1.0 0.31 2.386 2.25 1.1 0.91 1.318 2.34.9 2.355							incl					
BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.069 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 198.85 201.05 2.2 1.91 0.095 0.062 198.85 201.05 2.2 1.91 0.095 212.95 21.69 3.95 3.42 0.187 0.319 2.236 2.21 1.91 0.95 0.321 212.95 22.66 22.80.5 2.20.55 2.22.05 1.2 1.40 0.133 224.9 4 2.32.55 3.22 4.50 0.322 2.39.95 2.21 1.05 0.91 1.514 239.95 2.24.05 1 0.05 3.7							inen					
BD033 696,196.223 4,546,605.860 689,64 322.70 285 51 192.85 1.1 0.95 0.081 BD033 696,196.223 4,546,605.860 689,64 322.70 285 51 192.85 1.1 0.95 0.062 BD033 696,196.223 4,546,605.860 689,64 322.70 285 51 191.75 122.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689,64 322.70 285 51 191.75 122.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689,64 322.70 285 51 191.75 128.85 1.1 0.95 0.062 Incl. 220.05 224.95 4 3.46 0.934 Incl. 220.05 224.05 4 3.46 0.934 Incl. 220.05 224.11 1.05 0.91 2.365 Incl. 228.95 2.51 5.2												
BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD034 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 BD034 F F F F F F 1.87 0.395 3.42 0.187 BD034 F F F F F F F F F F 0.18 0.35												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
incl. 23.85 254.75 0.9 0.78 1469 BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 198.85 201.05 2.2 1.91 0.078 1.91 0.079 20.05 2.2 1.91 0.065 198.85 207.9 20.05 2.24.05 4.34 0.187 0.187 212.95 216.9 3.95 3.42 0.187 0.91 2.236 106. 220.05 224.05 2.4 1.05 0.91 2.236 226.1 27.73 1.2 1.04 0.133 234.9 236.95 2.05 1.78 0.93 239.95 245.15 5.2 4.50 0.735 239.95 241 1.05 0.91 1.514 271.4 272.4 1 0.87 0.125 2.1 0.87 0.125 204.4 295.5 1.1 0.87 <td></td>												
BD033 696,196.223 4,546,605.860 689.64 322.70 285 -51 191.75 192.85 1.1 0.95 0.062 198.85 201.05 2.2 1.91 0.095 207.9 208.8 1.9 1.65 0.319 212.95 216.9 3.95 3.42 0.187 220.05 224.05 4 3.46 0.934 incl. 220.05 224.05 4 3.46 0.934 incl. 220.05 224.05 4 3.46 0.934 234.9 236.95 2.05 1.78 0.532 239.95 241 1.05 0.91 1.514 271.4 272.4 1 0.87 0.125 294.4 295.5 1.1 0.95 7.901 315.5 320.6 5.05 4.7 0.328 214.4 10.87 0.205 1.0 0.87 0.205 315 0.06 5.05 4.7 0.205 1							incl					
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 21.25 1.91 0.095 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.039 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.025 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.025 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.025 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.025 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.123	BD033	696 196 223	4 546 605 860	689 64	322 70	285						
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.319 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13	00000	050,150.225	4,540,005.000	005.04	522.70	205	51					
212.95 216.9 3.95 3.42 0.187 220.05 224.05 4 3.46 0.934 incl. 220.05 221.1 1.05 0.91 2.236 234.9 236.95 2.05 1.78 0.532 239.95 245.15 5.2 4.50 0.735 294.4 295.5 1.1 0.87 0.125 294.4 295.5 1.1 0.95 7.91 117.45 118.45 1 0.87 0.125 294.4 295.5 1.1 0.95 7.91 117.45 118.45 1 0.87 0.123 117.45 118.45 1 0.87 0.123 117.45 118.45 1 0.87 0.123 117.45 118.45 1 0.87 0.123												
220.05 224.05 4 3.46 0.934 incl. 220.05 221.1 1.05 0.91 2.236 226.1 220.35 227.3 1.2 1.04 0.133 234.9 236.95 205 1.78 0.532 239.95 245.15 5.2 4.50 0.735 239.95 245.15 5.2 4.50 0.735 244 272.4 1 0.087 0.125 294.4 295.5 1.1 0.95 7.901 15.55 320.6 5.05 4.37 0.156 80034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 80034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.328 117.45 118.45 1 0.87 0.328 1.117.45 118.45 1 0.87 0.328 117.45 118.45 1 0.87 0.323												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.238 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.238 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.238 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.238 H14.45 115.45 1 0.87 0.238 0.125 11.4 0.87 0.238 H14.45 115.45 1 0.87 0.238 0.125 1.1 0.87 0.238 H14.45 115.45 1 0.87 0.238 1.1 0.87 0.238 H14.6 149.65 8.05 6.97 0.173 1.17 0.87 0.123 H14.6 149.65 8.05 6.97 0.173 1.98 0.91												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211							incl					
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 5.2 4.50 0.735 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 1 0.87 0.125 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.3 0.87							inci.					
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.125 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.5 1 0.87 0.103 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII												
239.95 241 1.05 0.91 1.514 271.4 272.4 1 0.87 0.125 294.4 295.5 1.1 0.95 7.901 315.55 320.6 5.05 4.37 0.156 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 596,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.105 I 114.45 1154.45 1 0.87 0.123 117.45 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.125 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 III III 115.45 1 0.87 0.123 117.45 118.45 1 0.87 0.109 IIII IIII IIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIII												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 8D034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 114.45 115.45 1 0.87 0.123 117.45 118.45 1 0.87 0.123 117.45 118.45 1 0.87 0.109 121.6 125.65 4.05 3.51 0.106 141.6 149.65 8.05 6.97 0.173 159.85 160.9 1.05 0.91 0.084 159.85 160.9 1.05 0.91 0.432 0.432 0.432 0.432 0.432												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.328 114.45 115.45 1 0.87 0.123 0.123 0.123 0.19 0.123 0.19 0.123 0.19 0.123 0.19 0.123 0.109 0.123 0.109 0.123 0.106 0.117.45 118.45 1 0.87 0.109 0.123 0.106 0.117.45 0.186 0.109 0.123 0.106 0.117.3 0.106 0.117.3 0.106 0.117.3 0.106 0.117.3 0.106 0.117.3 0.106 0.117.3 0.108 0.107.3 0.017.3 0.017.3 0.017.3 0.025 0.91 0.084 0.177.65 178.7 1.05 0.91 0.432 0.432												
BD034 696,363.236 4,547,203.211 711.13 283.90 285 -51 61.25 62.25 1 0.87 0.205 80.05 81.05 1 0.87 0.328 114.45 115.45 1 0.87 0.123 117.45 118.45 1 0.87 0.109 121.6 125.65 4.05 3.51 0.106 141.6 149.65 8.05 6.97 0.173 159.85 160.9 1.05 0.91 0.084 177.65 178.7 1.05 0.91 0.432 0.432 0.432 0.432 0.432												
80.0581.0510.870.328114.45115.4510.870.123117.45118.4510.870.109121.6125.654.053.510.106141.6149.658.056.970.173159.85160.91.050.910.084177.65178.71.050.910.432		COC 202 225	4 5 47 202 244	711 12	202.00	205	F.4					
114.45115.4510.870.123117.45118.4510.870.109121.6125.654.053.510.106141.6149.658.056.970.173159.85160.91.050.910.084177.65178.71.050.910.432	BD034	090,303.236	4,547,203.211	/11.13	283.90	285	-51					
117.45118.4510.870.109121.6125.654.053.510.106141.6149.658.056.970.173159.85160.91.050.910.084177.65178.71.050.910.432												
121.6125.654.053.510.106141.6149.658.056.970.173159.85160.91.050.910.084177.65178.71.050.910.432												
141.6149.658.056.970.173159.85160.91.050.910.084177.65178.71.050.910.432												
159.85160.91.050.910.084177.65178.71.050.910.432												
177.65 178.7 1.05 0.91 0.432												
181.55 182.75 1.2 1.04 0.362												
								181.55	182.75	1.2	1.04	0.362

							198	200.9	2.9	2.51	0.291
							215.85	216.85	1	0.87	0.112
							230.8	235.7	4.9	4.24	0.766
						incl.	230.8	231.8	1	0.87	3.240
BD035	696,347.258	4,547,157.682	710.87	251.00	280	-49	92	93	1	0.87	0.100
							100	102.05	2.05	1.78	0.074
							121.9	123	1.1	0.95	0.129
							135	136	1	0.87	0.197
							140.05	148	7.95	6.88	0.533
						incl.	142.1	143.05	0.95	0.82	1.870
						incl.	147.05	148	0.95	0.82	1.415
							153.2	154.2	1	0.87	0.097
							157.2	160.3	3.1	2.68	0.114
							162.3	163.3	1	0.87	0.116
							173.3	174.3	1	0.87	0.070
							181.25	183.25	2	1.73	0.053
							186.25	187.3	1.05	0.91	0.514
							215.2	216.2	1	0.87	1.149
							233.9	235.85	1.95	1.69	0.078
BD036	696,347.785	4,547,157.577	711.02	300.00	280	-62	129	130	1	0.87	0.207
							134	135	1	0.87	0.104
							144.9	145.9	1	0.87	0.110
							157	158.15	1.15	1.00	2.435
							165.9	168.9	3	2.60	0.035
							175	177.1	2.1	1.82	0.633
						incl.	176	177.1	1.1	0.95	1.142
							181.7	182.7	1	0.87	0.064
							194.8	195.85	1.05	0.91	0.198
							241.7	242.7	1.05	0.87	3.909
							255.7	256.7	1	0.87	0.209
							267.7	268.7	1	0.87	0.316
							284.7	285.7	1	0.87	0.530
BD037	696,381.320	4,547,088.718	704.77	329.10	280	-53	165.2	166.2	1	0.87	1.140
00007	050,501.520	4,547,000.710	/04.//	525.10	200	55	184.4	185.45	1.05	0.91	0.051
							194.4	196.4	2	1.73	0.423
							199.3	200.3	1	0.87	0.075
							224.4	200.3	1	0.87	0.056
							253.35	254.35	1	0.87	0.368
							267.3	268.3	1	0.87	0.508
							278.25	208.5	1	0.87	0.062
							278.25	279.25	1.5		0.002
0000	606 276 215	4 5 47 041 100	702 57	220.00	280	-54	167.1		1.5	1.30 0.87	
BD038	696,376.315	4,547,041.190	702.57	330.00	280	-54		168.1			0.150 0.065
							181.15	185.3	4.15	3.59	
						inal	232.2	234.95	2.75	2.38	0.717
						incl.	234.1	234.95	0.85	0.74	1.885
00000	COC 274 C42	4 5 47 252 776	712.00	275.00	200	40 5	278.2	279.2	1	0.87	0.420
BD039	696,374.643	4,547,253.770	712.80	275.00	280	-49.5	94	95	1	0.87	0.066
							98	105.1	7.1	6.15	0.203
							115.05	119	3.95	3.42	1.821
						incl.	116	117	1	0.87	6.897

							133	134	1	0.87	0.162
							143.2	145	1.8	1.56	0.067
							147	149	2	1.73	0.211
							152	155	3	2.60	0.350
							157.05	158.1	1.05	0.91	0.238
							160.35	161.35	1	0.87	0.166
							168.6	178.2	9.6	8.31	0.073
							209.2	211.2	2	1.73	1.083
						incl.	209.2	210.2	1	0.87	1.813
							216.7	217.7	1	0.87	0.061
							222.85	223.9	1.05	0.91	0.315
BD040	696,152.884	4,546,513.258	687.84	260.00	280	-49	114.5	115.5	1	0.87	0.744
		.,					126.4	127.45	1.05	0.91	0.087
							137.45	139.65	2.2	1.91	0.710
						incl.	137.45	138.55	1.1	0.95	1.207
						inci.	155.6	156.7	1.1	0.95	0.067
							161.95	162.95	1.1	0.87	0.684
							180.55	182.55	2	1.73	0.084
							194.6	195.6	1	0.87	0.404
							194.0	200.7	1.1	0.95	0.598
							215	216.05	1.1	0.93	2.011
							215	229.4	1.05	0.91	1.303
							164.3	165.3	1	0.87	0.124
BD041	696,220.907	4,546,602.509	691.97	440.10	280	-63	256.7	257.7	1	0.87	0.124
BD041	696,220.907	4,540,002.509	691.97	440.10	280	-03					
							267.1	268.1	1	0.87	0.086
							306.4	307.45	1.05	0.91	0.129
							314.75	318.05	3.3	2.86	0.603
						incl.	314.75	316.05	1.3	1.13	1.306
							329.1	330.1	1	0.87	0.626
				150.00			378.8	379.8	1	0.87	0.089
BD042	696,273.131	4,546,739.905	694.73	450.00	280	-61	271.65	278	6.35	5.50	1.245
						incl.	273.85	275	1.15	1.00	3.323
						incl.	277	278	1	0.87	3.922
							298.5	299.7	1.2	1.04	0.465
							357.65	358.65	1	0.87	0.179
							401.2	402.3	1.1	0.95	2.647
							411.5	412.5	1	0.87	2.118
							443.5	444.5	1	0.87	0.270
BD043	696,325.178	4,546,790.676	695.41	474.50	280	-65	282.4	284.4	2	1.73	2.880
							314.4	317.5	3.1	2.68	0.162
							324.2	330.5	6.3	5.46	1.374
						incl.	324.2	325.45	1.25	1.08	6.549
							352.3	353.3	1	0.87	0.090
							365.2	366.2	1	0.87	0.252
							377.3	379.3	2	1.73	0.716
							388.3	393.5	5.2	4.50	0.185
							418.95	419.95	1	0.87	0.366
							423.9	424.9	1	0.87	1.553
							461.6	462.65	1.05	0.91	0.196
BD044	696,401.278	4,546,833.477	691.67	521.00	280	-55	315.15	321.15	6	5.20	0.280

							323.2	333.15	9.95	8.62	0.327
						incl.	332.05	333.15	1.1	0.95	1.540
							338.25	340.25	2	1.73	0.339
							344.25	346.25	2	1.73	0.055
							347.25	348.25	1	0.87	0.064
							351.5	362.65	11.15	9.66	0.185
							365.65	370.55	4.9	4.24	0.107
							377.5	378.5	1	0.87	2.454
							385.6	386.6	1	0.87	0.195
							394.55	396.55	2	1.73	0.354
							414.45	415.45	1	0.87	0.051
							427.5	428.5	1	0.87	0.220
							441.4	442.4	1	0.87	0.109
							448.4	449.4	1	0.87	0.061
							466.5	467.5	1	0.87	0.652
							400.5	407.5	1	0.87	0.032
BD045	696,427.358	4,547,512.493	712.66	293.90	280	-59	85	86	1	0.87	0.110
60045	050,427.330	7,347,312.433	/12.00	233.30	200	-22	106.3	108.3	2	1.73	0.117
							108.5	108.5	2	0.87	0.079
							118.4	119.4	1	0.87	0.088
							125.4				
								133.4	2 1	1.73	0.361
							144.4	145.4		0.87	0.122
							155.4	160.4	5	4.33	0.237
							163.5	164.5	1	0.87	0.297
							183.7	184.7	1	0.87	4.788
							208.7	209.9	1.2	1.04	2.373
							213.9	214.9	1	0.87	0.050
BD046	696,415.432	4,547,561.220	715.46	344.00	280	-51	171.4	173.4	2	1.73	0.081
							175.5	176.5	1	0.87	0.071
							245.25	246.25	1	0.87	0.218
							268.2	270.2	2	1.73	0.147
							276.2	278.15	1.95	1.69	0.131
							288.2	289.2	1	0.87	0.093
							298.25	300.35	2.1	1.82	8.765
						incl.	298.25	299.35	1.1	0.95	16.505
							314.35	315.35	1	0.87	0.054
							317.35	318.35	1	0.87	0.105
BD047	696,438.822	4,547,618.468	719.57	245.00	280	-48	76	77	1	0.87	0.306
							89	92	3	2.60	0.146
							108.15	109.15	1	0.87	0.257
							114.1	120	5.9	5.11	0.054
							137.1	140.1	3	2.60	0.208
							147.2	150.2	3	2.60	0.072
							156.75	157.75	1	0.87	0.063
							159.75	160.75	1	0.87	0.085
							212.95	213.95	1	0.87	0.093
							230	232	2	1.73	0.113
							238	239.1	1.1	0.95	0.134
BD048	696,072.872	4,546,392.955	686.96	224.00	280	-50	35.65	36.65	1	0.87	0.219
							85.65	86.65	1	0.87	0.067
•											

							102 55	102 55	4	0.07	0.205
							102.55	103.55	1	0.87	0.295
							156.2	159.2	3	2.60	0.444
							161.3	162.3	1	0.87	0.068
							196.3	197.3	1	0.87	0.167
00040	COC 500 070	4 5 47 440 664	705.07	200.00	202	10	208.25	209.3	1.05	0.91	0.192
BD049	696,506.073	4,547,440.661	705.87	380.00	280	-49	176.4	177.4	1	0.87	0.190
							180.4	182.4	2	1.73	0.202
							195.35	197.4	2.05	1.78	0.274
							201.4	202.4	1	0.87	0.623
							204.4	205.4	1	0.87	0.055
							211.4	212.45	1.05	0.91	0.056
							244.7	245.8	1.1	0.95	0.069
							256	257	1	0.87	0.535
							272.9	273.9	1	0.87	0.208
							290.35	291.35	1	0.87	0.467
							304.4	305.4	1	0.87	0.060
							309.4	311.45	2.05	1.78	0.224
							317.4	318.4	1	0.87	0.215
							321.4	322.4	1	0.87	0.254
							336.7	337.7	1	0.87	1.141
BD050	696,436.837	4,547,351.341	708.83	329.00	280	-52	82.9	83.9	1	0.87	0.059
							125.9	126.9	1	0.87	0.059
							134.85	135.9	1.05	0.91	0.692
							139.9	141.9	2	1.73	0.052
							148.05	153.9	5.85	5.07	0.147
							156.8	159.75	2.95	2.55	0.130
							163.85	164.85	1	0.87	0.070
							173.8	174.8	1	0.87	0.119
							192	193.05	1.05	0.91	0.116
							195.1	196.1	1	0.87	0.384
							200.1	202.1	2	1.73	0.164
							206.1	207.1	1	0.87	0.123
							210.1	215.15	5.05	4.37	0.479
						incl.	212.1	213.1	1	0.87	1.484
							228.2	229.35	1.15	1.00	0.057
							255	256.05	1.05	0.91	0.054
							265	266	1	0.87	0.128
							290.3	291.3	1	0.87	0.137
							293.3	296.3	3	2.60	0.181
							303.3	304.3	1	0.87	0.075
							312.6	313.6	1	0.87	0.521
BD051	696,431.632	4,547,291.149	707.51	329.00	280	-51	121.15	122.15	1	0.87	0.130
							128.2	129.2	1	0.87	1.281
							138.2	139.2	1	0.87	0.050
							171.6	172.6	1	0.87	0.569
							176.55	177.55	1	0.87	0.067
							189.9	190.9	1	0.87	0.234
							220.9	221.9	1	0.87	0.179
							233	234	1	0.87	0.131
							236	238	2	1.73	0.129

							246	247	1	0.87	0.145
							269	271	2	1.73	0.149
							279.8	280.8	1	0.87	0.806
							311.7	312.7	1	0.87	0.270
BD052	696,410.228	4,547,197.596	706.34	361.90	280	-55	141.85	142.85	1	0.87	0.230
							181.9	182.9	1	0.87	0.104
							185.8	188.85	3.05	2.64	0.132
							192.85	193.85	1	0.87	0.063
							198.85	199.85	1	0.87	0.058
							201.85	206.85	5	4.33	0.073
							212.9	213.9	1	0.87	0.074
							231.65	232.65	1	0.87	1.331
							264.9	265.9	1	0.87	0.223
							281.9	282.9	1	0.87	0.202
							285.9	287	1.1	0.95	5.348
BD053	696,296.865	4,546,800.622	693.48	380.00	280	-57	91	92	1	0.87	0.160
	,	,,					235	237	2	1.73	0.095
							247.05	251.05	4	3.46	0.188
							264.1	265.1	1	0.87	0.167
							267.15	270.2	3.05	2.64	0.159
							280.35	281.35	1	0.87	5.349
							283.4	284.4	1	0.87	0.386
							287.4	288.45	1.05	0.91	0.121
							301.45	302.5	1.05	0.91	0.811
							311.6	312.6	1.05	0.87	0.811
							337.8	338.8	1	0.87	0.218
BI0001	696,272.300	4,547,328.359	728.72	40.00	295	-60	14	17	3	2.60	0.089
BI0001 BI0002	696,288.714	4,547,320.974	727.05	40.00	295	-60	3	4	1	0.87	0.089
BIUUUZ	090,200.714	4,547,520.974	727.05	40.00	295	-00	6	4 7	1	0.87	0.081
							15	20	5	4.33	0.144
							15 24	20	5	4.33 0.87	0.228
	606 250 242	4 5 47 204 062	720.00	40.00	205	60	30	31	1	0.87	0.111
BI0003	696,258.342	4,547,301.863	728.86	40.00	295	-60	14	15		0.87	0.097
							25	26	1	0.87	0.179
BI0004	696,286.005	4,547,288.968	727.01	49.00	295	-60	1	3	2	1.73	0.066
							16	17	1	0.87	0.096
BI0005	696,244.013	4,547,275.426	727.90	70.00	295	-60	0	1	1	0.87	0.083
							5	7	2	1.73	0.127
							12	13	1	0.87	1.487
							41	42	1	0.87	0.106
							56	60	4	3.46	0.111
BI0005							67	68	1	0.87	0.071
BI0006	696,281.765	4,547,257.813	724.70	40.00	295	-60	2	5	3	2.60	0.367
							22	27	5	4.33	0.439
						incl.	25	26	1	0.87	1.632
BI0007	695,989.374	4,546,573.289	682.78	30.00	285	-60	0	2	2	1.73	0.115
BI0008	695,986.660	4,546,543.328	682.64	30.00	285	-60	2	9	7	6.06	0.064
							12	13	1	0.87	0.064
BI0009	696,013.680	4,546,538.603	682.78	49.00	285	-60	32	36	4	3.46	0.587
Diocos											

BI0010	696,023.013	4,546,567.457	680.73	50.00	285	-60	19	22	3	2.60	0.352
							29	31	2	1.73	0.122
							34	46	12	10.39	0.118
BI0011	696,029.472	4,546,539.291	681.38	70.00	285	-60	0	1	1	0.87	0.140
							12	15	3	2.60	2.984
						incl.	12	13	1	0.87	8.807
							27	28	1	0.87	0.064
							30	31	1	0.87	0.131
							43	45	2	1.73	0.239
							57	70	13	11.26	0.200
BI0012	696,005.287	4,546,509.896	683.24	52.00	285	-60	0	10	10	8.66	0.077
	,	,,					18	19	1	0.87	0.096
							51	52	1	0.87	0.095
BI0013	696,276.715	4,547,276.600	727.64	40.00	295	-60	5	6	1	0.87	0.103
BI0013	696,290.162	4,547,303.407	728.72	40.00	295	-60	4	5	1	0.87	0.071
DIOOII	050,250.102	4,547,505.407	720.72	-0.00	255	00	8	9	1	0.87	0.208
							23	24	1	0.87	0.189
							35	36	1	0.87	0.062
BI0015	696,261.094	4,547,317.090	729.00	40.00	295	-60	1	2	1	0.87	0.002
BI0013	090,201.094	4,547,517.090	729.00	40.00	295	-00	1 8	10	2	1.73	0.079
							° 22	23		0.87	1.014
									1		
	COC 251 002	4 5 47 200 245	720.44	46.00	205	<u> </u>	31 13	32	1	0.87	0.095
BI0016	696,251.803	4,547,288.345	728.41	46.00	295	-60		14	1	0.87	0.073
							17	18	1	0.87	1.859
							39	40	1	0.87	0.194
BI0017	696,240.603	4,547,260.567	727.50	43.00	295	-60	9	10	1	0.87	0.267
							13	14	1	0.87	0.072
							30	31	1	0.87	0.156
							38	39	1	0.87	0.329
BI0018	696,278.754	4,547,342.019	730.01	40.00	295	-60	2	3	1	0.87	0.077
							10	11	1	0.87	0.171
							16	17	1	0.87	0.170
BI0019	696,298.133	4,547,332.831	728.24	43.00	295	-60	2	3	1	0.87	0.063
							10	11	1	0.87	2.885
							16	17	1	0.87	0.718
							29	30	1	0.87	0.126
							32	33	1	0.87	0.110
							36	37	1	0.87	0.131
BI0020	696,265.061	4,547,265.416	725.92	70.00	295	-60	9	10	1	0.87	0.067
							20	21	1	0.87	0.115
							23	24	1	0.87	0.331
							32	35	3	2.60	0.047
							41	42	1	0.87	0.079
							47	48	1	0.87	0.764
							54	59	5	4.33	0.059
							61	64	3	2.60	0.322
BI0021	696,275.480	4,547,293.982	727.78	43.00	295	-60	9	10	1	0.87	0.256
BI0022	696,265.523	4,547,281.789	727.68	40.00	295	-60	9	13	4	3.46	0.128
							22	23	1	0.87	0.533
BI0023	696,326.418	4,547,402.799	723.66	40.00	295	-60	6	9	3	2.60	0.081
	,	, ,					-		-		

1											
							18	19	1	0.87	0.064
							20	21	1	0.87	0.080
							27	28	1	0.87	0.308
BI0024	696,309.488	4,547,395.163	727.04	44.00	295	-60	43	44	1	0.87	0.055
BI0025	696,319.538	4,547,390.526	726.20	43.00	295	-60	3	4	1	0.87	0.058
							6	7	1	0.87	0.088
							12	15	3	2.60	0.051
							19	24	5	4.33	0.369
						incl.	23	24	1	0.87	1.414
BI0026	696,317.826	4,547,374.232	726.01	40.00	295	-60	8	9	1	0.87	0.080
							13	14	1	0.87	0.607
							23	24	1	0.87	0.077
							26	27	1	0.87	0.301
BI0027	696,306.697	4,547,379.750	728.78	45.00	295	-60	43	45	2	1.73	0.355
BI0028	696,282.732	4,547,374.326	730.62	46.00	295	-60	11	12	1	0.87	0.157
							42	46	4	3.46	0.059
BI0029	696,292.746	4,547,371.325	729.81	43.00	295	-60	13	14	1	0.87	0.074
							31	34	3	2.60	0.039
BI0030	696,302.691	4,547,368.039	728.97	46.00	295	-60	1	2	1	0.87	0.052
							23	24	1	0.87	0.138
							41	42	1	0.87	0.183
BI0031	696,279.141	4,547,357.909	729.67	47.00	295	-60	1	5	4	3.46	0.126
							29	30	1	0.87	1.084
							33	34	1	0.87	0.069
							42	43	1	0.87	0.668
BI0032	696,288.728	4,547,353.366	728.35	47.00	295	-60	7	9	2	1.73	0.120
							29	30	1	0.87	0.397
							35	36	1	0.87	0.111
BI0033	696,298.312	4,547,348.617	727.96	45.00	295	-60	0	5	5	4.33	0.213
							9	12	3	2.60	0.599
						incl.	9	10	1	0.87	1.711
							26	27	1	0.87	0.072
							35	36	1	0.87	0.052
							37	38	1	0.87	0.070
BI0034	696,307.660	4,547,344.317	727.50	43.00	295	-60	28	29	1	0.87	0.184
							34	35	1	0.87	0.203
							40	41	1	0.87	0.251
BI0035	696,269.425	4,547,346.539	729.76	28.00	295	-60	3	4	1	0.87	0.088
BI0036	696,288.684	4,547,337.159	728.98	46.00	295	-60	2	3	1	0.87	0.051
							14	16	2	1.73	0.843
						incl.	14	15	1	0.87	1.338
							32	33	1	0.87	1.541
							36	37	1	0.87	0.205
BI0037	696,243.995	4,547,342.172	729.76	19.00	295	-60	-		significant int		
BI0038	696,253.629	4,547,337.547	729.82	47.00	295	-60	4	5	1	0.87	0.052
	,						33	34	1	0.87	1.370
							41	43	2	1.73	0.369
							46	47	1	0.87	0.156
BI0039	696,263.027	4,547,333.042	729.31	47.00	295	-60	41	42	1	0.87	0.079
		,,			200		46	47	1	0.87	0.091
L							.0	.,	*	0.07	0.001

BI0040	696,280.689	4,547,324.818	727.89	13.00	295	-60		No	significant inte	ersections	
BI0041	696,251.989	4,547,321.296	729.50	46.00	295	-60	34	35	1	0.87	0.136
							39	42	3	2.60	0.148
BI0042	696,222.907	4,547,334.858	728.67	46.00	295	-60	24	25	1	0.87	0.113
BI0043	696,232.505	4,547,330.400	729.11	46.00	295	-60	8	9	1	0.87	0.147
							13	14	1	0.87	0.066
							17	18	1	0.87	0.082
							21	24	3	2.60	0.202
							42	43	1	0.87	0.294
BI0044	696,242.362	4,547,325.853	729.47	46.00	295	-60	4	5	1	0.87	0.067
							21	22	1	0.87	0.084
							26	27	1	0.87	0.109
							29	30	1	0.87	0.099
							36	38	2	1.73	0.233
							45	46	1	0.87	0.122
BI0045	696,270.058	4,547,312.969	729.14	46.00	295	-60	6	9	3	2.60	0.135
							26	27	1	0.87	0.341
							38	39	1	0.87	0.148
							45	46	1	0.87	0.072
BI0046	696,278.857	4,547,308.713	728.75	45.00	295	-60	1	2	1	0.87	0.055
							6	7	1	0.87	0.493
							16	17	1	0.87	0.070
							23	24	1	0.87	0.093
BI0047	696,299.800	4,547,300.686	727.85	42.00	295	-60	29	30	1	0.87	0.072
							34	36	2	1.73	0.487
							41	42	1	0.87	0.074
BI0048	696,198.784	4,547,329.460	726.95	43.00	295	-60		No	significant inte	ersections	
BI0049	696,209.754	4,547,324.351	727.80	45.00	295	-60	10	11	1	0.87	0.055
BI0050	696,219.757	4,547,319.681	728.74	46.00	295	-60		No	significant inte	ersections	
BI0051	696,229.697	4,547,315.054	728.83	47.00	295	-60	27	29	2	1.73	0.140
BI0052	696,238.653	4,547,310.879	728.93	31.00	295	-60	9	11	2	1.73	0.158
BI0053	696,248.784	4,547,306.188	729.15	45.00	295	-60	35	36	1	0.87	0.172
							39	40	1	0.87	0.050
							43	44	1	0.87	0.087
BI0054	696,268.396	4,547,298.318	728.09	46.00	295	-60	18	19	1	0.87	0.108
							25	27	2	1.73	0.549
BI0055	696,295.917	4,547,284.292	725.41	42.00	295	-60	38	42	4	3.46	0.290
BI0056	696,304.995	4,547,282.758	724.95	39.00	295	-60		No	significant int	ersections	
BI0057	696,193.460	4,547,316.591	726.58	42.00	295	-60	29	30	1	0.87	0.187
BI0058	696,204.330	4,547,311.126	727.30	44.00	295	-60	13	14	1	0.87	0.071
BI0059	696,214.022	4,547,306.465	728.06	44.00	295	-60	6	7	1	0.87	0.065
							22	23	1	0.87	0.144
BI0060	696,221.999	4,547,302.718	728.10	47.00	295	-60	1	2	1	0.87	0.071
							21	22	1	0.87	1.102
							24	26	2	1.73	0.075
BI0061	696,231.817	4,547,298.011	728.46	46.00	295	-60	35	37	2	1.73	0.227
BI0062	696,242.234	4,547,293.178	728.69	55.00	295	-60	9	10	1	0.87	0.079
							21	23	2	1.73	0.119
							30	31	1	0.87	0.063
							43	44	1	0.87	0.180
											'

							49	50	1	0.87	0.058
BI0063	696,286.059	4,547,271.595	725.13	44.00	295	-60	26	27	1	0.87	0.433
BI0064	696,296.534	4,547,266.606	724.31	40.00	295	-60	29	30	1	0.87	0.216
							33	35	2	1.73	0.787
						incl.	33	34	1	0.87	1.396
BI0065	696,304.462	4,547,262.699	723.55	40.00	295	-60	8	10	2	1.73	0.130
							24	25	1	0.87	0.060
BI0066	696,184.530	4,547,303.592	726.13	42.00	295	-60	1	2	1	0.87	0.107
BI0067	696,194.927	4,547,298.771	726.83	42.00	295	-60	7	8	1	0.87	0.086
BI0068	696,204.677	4,547,294.020	727.22	43.00	295	-60	6	7	1	0.87	0.053
							22	23	1	0.87	0.057
							41	42	1	0.87	0.077
BI0069	696,215.014	4,547,289.239	727.71	45.00	295	-60	0	1	1	0.87	0.062
							3	4	1	0.87	0.121
							37	38	1	0.87	0.106
BI0070	696,224.282	4,547,284.839	728.12	46.00	295	-60	3	5	2	1.73	1.756
						incl.	3	4	1	0.87	3.394
							19	20	1	0.87	0.129
BI0071	696,234.501	4,547,279.687	728.25	55.00	295	-60	19	20	1	0.87	0.110
							23	24	1	0.87	0.317
BI0072	696,254.727	4,547,270.518	726.85	55.00	295	-60	7	8	1	0.87	0.056
							29	30	1	0.87	0.058
							39	40	1	0.87	0.139
							44	45	1	0.87	0.129
BI0073	696,274.140	4,547,260.997	724.11	42.00	295	-60	27	29	2	1.73	0.066
							41	42	1	0.87	0.061
BI0074	696,289.659	4,547,253.738	722.67	38.00	295	-60	15	16	1	0.87	0.459
							23	26	3	2.60	0.120
BI0075	696,298.927	4,547,249.089	721.74	38.00	295	-60	20	21	1	0.87	0.083
							28	29	1	0.87	0.109
							33	34	1	0.87	0.054
BI0076	696,202.140	4,547,278.365	726.87	43.00	295	-60	22	23	1	0.87	0.306
							28	30	2	1.73	0.224
B 10077							38	40	2	1.73	0.382
BI0077	696,211.582	4,547,273.800	727.20	48.00	295	-60	29	30	1	0.87	0.408
BI0078	696,221.887	4,547,269.102	727.55	48.00	295	-60	17	18	1	0.87	0.101
DI0070	COC 224 207	4 5 47 2 55 000	707.54	55.00	295	-60	21	22 11	1	0.87	0.125
BI0079	696,231.387	4,547,265.089	727.51	55.00	295	-60	10		1	0.87	9.096
							21	22	1	0.87	0.079
							31	32	1	0.87	0.299
DIOODO	COC 251 407	4 5 47 200 071	726.00	52.00	205	<u> </u>	47	51	4	3.46	0.222
BI0080	696,251.487 696,270.627	4,547,260.671 4,547,251.923	726.09	53.00 40.00	295 295	-60 -60	3	4 6	1	0.87	0.359
BI0081	090,270.027	4,347,251.923	123.38	40.00	295	-00					0.450
							22 28	23 29	1 1	0.87 0.87	0.250 0.508
							28 35	29 38	3	2.60	0.508
BI0082	696,280.159	4,547,247.199	722.82	40.00	295	-60	<u> </u>	<u>38</u> 2	2	1.73	0.053
010062	090,280.139	4,347,247.199	122.02	40.00	295	-00	0 16	2 17	2	0.87	0.094
							23	27	4	3.46	0.225
							23 35	36	4	0.87	0.149
							55	50	T	0.87	0.001

BI0083	696,288.483	4,547,243.555	722.22	40.00	295	-60	6	7	1	0.87	0.052
							9	10	1	0.87	0.111
							17	18	1	0.87	0.148
							24	25	1	0.87	0.077
							28	33	5	4.33	0.170
							39	40	1	0.87	0.056
BI0084	696,297.311	4,547,239.339	721.53	35.00	295	-60	21	23	2	1.73	0.060
							27	28	1	0.87	0.066
BI0085	696,186.767	4,547,286.042	726.40	43.00	295	-60			significant inte		
BI0086	696,195.340	4,547,281.905	726.49	43.00	295	-60	24	25	1	0.87	0.156
							33	34	1	0.87	0.051
BI0087	696,171.350	4,547,277.111	724.56	41.00	295	-60	9	10	1	0.87	0.082
							27	28	1	0.87	0.092
							30	31	1	0.87	0.095
BIOGOG	COC 400 CO4	4 5 47 272 600	725.05		205		36	37	1	0.87	0.098
BI0088	696,180.681	4,547,272.600	725.05	41.00	295	-60	0		significant inte		0.050
BI0089	696,189.790 696,198.859	4,547,268.229	725.27	42.00 48.00	295	-60	8	9	1	0.87	0.053
B10090	,	4,547,263.593	725.68		295	-60	28	29		0.87	0.089
BI0091	696,208.004 696,168.197	4,547,259.376 4,547,260.757	725.84	47.00 40.00	295 295	-60 -60	25	27	2 significant inte	1.73	0.448
BI0092	696,178.188	4,547,256.588	723.52	40.00	295	-60	10	12	2	1.73	0.081
BI0093	090,178.188	4,547,250.588	724.02	41.00	295	-60	35	36	2	0.87	0.081
BI0094	696,187.140	4,547,252.453	724.21	41.00	295	-60	30		significant inte		0.091
BI0094	696,162.887	4,547,246.870	724.21	38.00	295	-60	13	15	2	1.73	0.078
010035	090,102.887	4,547,240.870	122.51	38.00	295	-00	28	29	1	0.87	0.053
							35	36	1	0.87	0.780
BI0096	696,172.124	4,547,242.389	723.05	40.00	295	-60	10	12	2	1.73	0.075
210030		.,,			200		15	16	1	0.87	0.085
							27	28	1	0.87	0.094
BI0097	696,260.970	4,547,256.340	725.34	53.00	295	-60	9	10	1	0.87	0.056
							16	17	1	0.87	0.103
							24	25	1	0.87	0.354
							30	31	1	0.87	0.075
							37	39	2	1.73	0.159
BI0098	695,982.808	4,546,576.766	682.59	35.00	285	-60		No	significant inte	ersections	
BI0099	695,981.043	4,546,564.128	682.71	30.00	285	-60	0	1	1	0.87	0.050
							3	4	1	0.87	0.062
							21	22	1	0.87	0.082
							28	29	1	0.87	0.208
BI0100	695,990.385	4,546,561.803	683.05	36.00	285	-60	1	4	3	2.60	0.061
							11	12	1	0.87	0.050
BI0101	695,999.271	4,546,559.405	683.20	47.00	285	-60	2	3	1	0.87	0.098
							11	13	2	1.73	0.867
							37	38	1	0.87	0.050
BI0102	696,009.256	4,546,555.722	683.10	50.00	285	-60	16	17	1	0.87	0.348
							22	28	6	5.20	1.199
						incl.	26	27	1	0.87	6.695
BI0103	696,019.308	4,546,554.251	682.30	60.00	285	-60	2	6	4	3.46	0.068
							34	44	10	8.66	0.260
						incl.	34	35	1	0.87	1.274

							47	51	4	3.46	0.071
							53	54	1	0.87	0.065
BI0104	696,005.865	4,546,542.397	682.91	45.00	285	-60	0	2	2	1.73	0.083
							17	21	4	3.46	0.128
							28	30	2	1.73	0.075
							33	34	1	0.87	0.051
BI0105	695,978.387	4,546,547.851	682.90	40.00	285	-60	3	8	5	4.33	0.075
							31	32	1	0.87	0.286
BI0106	695,996.794	4,546,528.463	682.13	40.00	285	-60	0	9	9	7.79	0.228
BI0107	696,006.506	4,546,525.867	682.76	40.00	285	-60	0	7	7	6.06	0.068
							25	27	2	1.73	0.709
BI0108	696,016.363	4,546,523.014	683.26	40.00	285	-60	1	3	2	1.73	0.059
							11	12	1	0.87	0.616
							18	19	1	0.87	0.153
							36	37	1	0.87	0.082
BI0109	696,027.109	4,546,520.229	684.06	40.00	285	-60	24	25	1	0.87	0.084
BI0110	696,014.537	4,546,569.348	680.56	40.00	285	-60	1	3	2	1.73	0.069
							23	32	9	7.79	0.175
BI0111	696,005.200	4,546,576.392	680.57	45.00	285	-60	1	6	5	4.33	0.115
							23	24	1	0.87	0.223
BI0112	696,027.847	4,546,551.751	681.78	38.00	285	-60	22	23	1	0.87	0.200
							27	28	1	0.87	0.354
BI0113	696,301.621	4,547,369.509	729.13	43.00	114.5	-60	1	3	2	1.73	0.190
							11	12	1	0.87	0.403
							27	29	2	1.73	6.002
							35	36	1	0.87	0.081
BI0114	696,247.000	4,547,289.493	728.44	48.00	294.5	-60	5	6	1	0.87	0.168
							11	12	1	0.87	0.079
							27	28	1	0.87	0.221
BI0115	696,295.598	4,547,332.324	728.41	42.00	294.5	-60	7	8	1	0.87	0.054
							25	26	1	0.87	0.057
							28	31	3	2.60	0.441
						incl.	30	31	1	0.87	1.166
							37	38	1	0.87	0.053
BI0116	696,283.963	4,547,337.518	729.32	40.00	294.5	-60	14	15	1	0.87	0.470
							38	39	1	0.87	0.220
BI0117	696,240.689	4,547,333.878	729.51	46.00	294.5	-60	1	2	1	0.87	0.195
							20	21	1	0.87	0.207
BI0118	696,306.362	4,547,176.296	710.61	59.00	295	-60	53	54	1	0.87	0.415
BI0119	696,315.137	4,547,172.049	710.84	59.00	295	-60	46	47	1	0.87	0.197
							53	56	3	2.60	0.144
BI0120	696,296.209	4,547,142.974	707.86	59.00	295	-60	56	58	2	1.73	0.377
BI0121	696,305.675	4,547,140.526	708.12	59.00	295	-60	51	52	1	0.87	0.064
BI0122	696,285.693	4,547,120.816	707.02	56.00	295	-60	27	28	1	0.87	1.762
							48	49	1	0.87	0.434
BI0123	696,295.261	4,547,116.277	707.24	56.00	295	-60		No	significant inte	ersections	
BI0124	696,277.236	4,547,091.164	704.22	53.00	295	-60	15	16	1	0.87	0.077
	696,287.032	4,547,087.682	704.60	53.00	295	-60		No	significant inte	ersections	
BI0125	050,207.052										
BI0125 BI0126	696,264.217	4,547,063.651	702.08	50.00	295	-60	20	22	2	1.73	0.672

						incl.	43	44	1	0.87	1.173
BI0127	696,274.332	4,547,059.728	702.24	50.00	295	-60	31	32	1	0.87	0.136
DIOIZ	050,274.552	4,547,055.720	702.24	50.00	255	-00	40	41	1	0.87	0.130
BI0128	696,251.805	4,547,037.142	700.51	48.00	295	-60	21	22	1	0.87	0.266
BI0128	696,260.360	4,547,033.419	700.89	48.00	295	-60	32	33	1	0.87	0.286
BI0123	696,244.654	4,547,006.345	700.42	48.00	295	-60	26	27	1	0.87	0.106
BI0130	696,253.836	4,547,002.212	700.46	48.00	295	-60	20		significant int		0.100
BI0131	696,228.347	4,546,980.817	700.26	47.00	295	-60	33	34	1	0.87	0.169
0.0101	000)2201017	1,5 10,5001017	,00120		235	00	40	41	- 1	0.87	0.066
							43	44	1	0.87	0.074
							46	47	1	0.87	0.063
BI0133	696,237.412	4,546,976.688	699.94	47.00	295	-60	25	26	1	0.87	0.093
BI0134	696,200.940	4,546,961.368	700.41	47.00	295	-60	18	19	1	0.87	0.482
510101	000,200.0	1,5 10,5 021000	700112		200		23	24	- 1	0.87	0.089
							45	47	2	1.73	0.182
BI0135	696,210.453	4,546,956.834	700.75	47.00	295	-60	28	29	1	0.87	0.086
BI0136	696,219.421	4,546,952.402	700.62	47.00	295	-60	20	-	significant int		0.000
BI0137	696,228.219	4,546,947.994	700.00	47.00	295	-60			significant int		
BI0138	696,237.063	4,546,943.580	700.25	47.00	295	-60			significant int		
BI0139	696,193.694	4,546,931.325	700.60	48.00	295	-60	42	47	5	4.33	0.331
BI0140	696,202.702	4,546,927.490	700.49	48.00	295	-60	29	30	1	0.87	0.051
	,	,- ,					42	43	1	0.87	0.184
BI0141	696,211.963	4,546,923.115	700.26	48.00	295	-60			significant int		
BI0142	696,221.305	4,546,919.127	700.14	48.00	295	-60			significant int		
BI0143	696,230.462	4,546,915.044	699.89	48.00	295	-60			significant int		
BI0144	696,239.501	4,546,910.952	699.91	48.00	295	-60			significant int		
BI0145	696,183.324	4,546,902.364	700.36	47.00	295	-60	26	27	1	0.87	0.119
							41	42	1	0.87	0.240
BI0146	696,071.272	4,546,586.693	688.64	37.00	295	-60	5	7	2	1.73	0.129
							22	23	1	0.87	0.058
BI0147	696,078.673	4,546,583.054	688.85	37.00	295	-60	11	12	1	0.87	0.060
							14	15	1	0.87	1.733
BI0148	696,087.879	4,546,578.826	688.95	37.00	295	-60			significant int	ersections	
BI0149	696,096.989	4,546,574.549	688.66	37.00	295	-60		No	significant int	ersections	
BI0150	696,105.675	4,546,570.425	688.52	37.00	295	-60		No	significant int	ersections	
BI0151	696,114.985	4,546,564.278	691.39	37.00	295	-60	32	33	1	0.87	0.086
BI0152	696,082.652	4,546,616.673	693.62	37.00	295	-60		No	significant int	ersections	
BI0153	696,091.700	4,546,612.479	693.37	37.00	295	-60	16	17	1	0.87	0.059
BI0154	696,100.596	4,546,608.184	693.59	37.00	295	-60		No	significant int	ersections	
BI0155	696,110.047	4,546,605.705	691.46	37.00	295	-60		No	significant int	ersections	
BI0156	696,118.950	4,546,601.597	691.20	37.00	295	-60		No	significant int	ersections	
BI0157	696,128.309	4,546,597.173	691.36	37.00	295	-60		No	significant int	ersections	
BI0158	696,081.329	4,546,648.855	690.07	37.00	295	-60	3	4	1	0.87	0.178
							22	24	2	1.73	0.074
BI0159	696,088.628	4,546,645.283	690.18	37.00	295	-60	6	7	1	0.87	0.194
							18	21	3	2.60	0.126
BI0160	696,097.488	4,546,641.227	690.03	37.00	295	-60		No	significant int	ersections	
BI0161	696,106.501	4,546,636.958	690.29	37.00	295	-60	36	37	1	0.87	0.187
BI0162	696,115.724	4,546,632.700	690.66	37.00	295	-60		No	significant int	ersections	
BI0163	696,124.886	4,546,628.391	690.93	37.00	295	-60		No	significant int	ersections	

BI0164	696,134.091	4,546,624.045	691.13	37.00	295	-60		Ν	lo significant int	ersections	
BI0165	696,143.309	4,546,619.836	691.40	37.00	295	-60		Ν	lo significant int	ersections	
BI0166	696,098.084	4,546,677.689	689.55	37.00	295	-60	8	11	3	2.60	0.126
							34	37	3	2.60	0.758
						incl.	35	36	1	0.87	2.033
BI0167	696,105.752	4,546,674.157	689.76	37.00	295	-60	12	15	3	2.60	0.048
							24	25	1	0.87	0.124
							32	33	1	0.87	0.065
BI0168	696,114.581	4,546,669.983	689.75	37.00	295	-60		Ν	lo significant int	ersections	
BI0169	696,123.449	4,546,665.850	690.02	37.00	295	-60	29	31	2	1.73	0.349
BI0170	696,132.851	4,546,661.482	690.00	37.00	295	-60		Ν	lo significant int	ersections	
BI0171	696,110.798	4,546,702.075	689.37	37.00	295	-60	12	13	1	0.87	0.142
BI0172	696,118.566	4,546,698.360	689.54	37.00	295	-60	28	29	1	0.87	0.315
							34	35	1	0.87	0.180
BI0173	696,127.327	4,546,694.302	689.64	37.00	295	-60	13	14	1	0.87	0.162
							20	21	1	0.87	0.058
							33	35	2	1.73	0.753
						incl.	34	35	1	0.87	1.286
BI0174	696,136.770	4,546,689.930	689.81	37.00	295	-60		Ν	lo significant int	ersections	
BI0175	696,145.440	4,546,685.723	689.82	37.00	295	-60	28	29	1	0.87	0.068
BI0176	696,132.921	4,546,724.421	689.85	37.00	295	-60		Ν	lo significant int	ersections	
BI0177	696,139.099	4,546,721.455	689.85	37.00	295	-60	22	23	1	0.87	0.069
BI0178	696,148.186	4,546,717.281	689.71	37.00	295	-60	6	7	1	0.87	0.067
BI0179	696,156.803	4,546,713.354	689.41	37.00	295	-60	22	23	1	0.87	0.144
							29	30	1	0.87	0.100
BI0180	696,129.692	4,546,759.737	689.60	37.00	295	-60	19	20	1	0.87	0.101
BI0181	696,137.452	4,546,755.998	689.49	37.00	295	-60	5	6	1	0.87	0.119
							23	25	2	1.73	0.099
BI0182	696,146.177	4,546,751.907	689.72	37.00	295	-60	27	28	1	0.87	0.059
BI0183	696,155.280	4,546,747.599	690.15	37.00	295	-60		Ν	lo significant int	ersections	
BI0184	696,164.835	4,546,743.329	690.36	37.00	295	-60		Ν	lo significant int	ersections	
BI0185	696,173.821	4,546,739.123	689.99	37.00	295	-60		Ν	lo significant int	ersections	
BI0186	696,147.186	4,546,785.334	689.68	37.00	295	-60			lo significant int	ersections	
BI0187	696,155.090	4,546,781.623	689.78	37.00	295	-60	19	20	1	0.87	0.355
BI0188	696,162.711	4,546,778.108	689.99	37.00	295	-60			lo significant int	ersections	
BI0189	696,170.386	4,546,774.379	689.74	37.00	295	-60	22	23	1	0.87	0.120
BI0190	696,178.013	4,546,770.805	689.71	37.00	295	-60			lo significant int		
BI0191	696,185.547	4,546,767.256	689.67	37.00	295	-60			lo significant int		
BI0192	696,193.220	4,546,763.709	689.68	37.00	295	-60			lo significant int		
BI0193	696,200.746	4,546,760.252	690.06	37.00	295	-60	19	20	1	0.87	0.253
BI0194	696,157.918	4,546,814.745	689.86	39.00	295	-60			lo significant int		
BI0195	696,167.568	4,546,810.346	689.56	37.00	295	-60			lo significant int		
BI0196	696,177.091	4,546,805.906	689.56	37.00	295	-60			lo significant int		
BI0197	696,185.869	4,546,801.840	689.52	37.00	295	-60	8	9	1	0.87	0.093
BI0198	696,194.291	4,546,797.731	689.29	37.00	295	-60			lo significant int		
BI0199	696,203.311	4,546,793.611	689.59	37.00	295	-60			lo significant int		
BI0200	696,212.939	4,546,789.140	689.89	37.00	295	-60			lo significant int		
BI0201	696,166.622	4,546,841.162	689.97	37.00	295	-60			lo significant int		
BI0202	696,175.880	4,546,836.802	689.71	37.00	295	-60			lo significant int		
BI0203	696,185.293	4,546,832.446	689.69	37.00	295	-60	5	7	2	1.73	0.687

						incl.	5	6	1		1.107
BI0204	696,194.051	4,546,828.194	689.80	33.00	295	-60	23	24	1	0.87	0.056
BI0205	696,203.048	4,546,823.877	689.42	37.00	295	-60		No	significant inte	ersections	
BI0206	696,212.673	4,546,819.463	689.51	37.00	295	-60	22	23	1	0.87	0.081
BI0207	696,221.338	4,546,815.318	689.43	37.00	295	-60	23	24	1	0.87	0.088
BI0208	696,179.910	4,546,868.691	690.30	37.00	295	-60	24	25	1	0.87	0.080
BI0209	696,189.493	4,546,864.049	690.34	37.00	295	-60		No	significant inte	ersections	
BI0210	696,198.532	4,546,859.647	690.48	37.00	295	-60	32	33	1	0.87	0.151
BI0211	696,207.470	4,546,855.526	690.23	37.00	295	-60	28	30	2	1.73	0.145
BI0212	696,216.744	4,546,851.071	690.15	37.00	295	-60		No	significant inte	ersections	
BI0213	696,225.265	4,546,847.011	690.73	37.00	295	-60		No	significant inte	ersections	
BI0214	696,192.247	4,546,898.234	690.62	37.00	295	-60	10	11	1	0.87	0.361
							25	27	2	1.73	0.147
BI0215	696,201.162	4,546,893.942	690.60	37.00	295	-60	28	29	1	0.87	0.118
BI0216	696,210.479	4,546,889.733	690.77	37.00	295	-60	9	10	1	0.87	0.250
BI0217	696,219.254	4,546,885.671	690.65	37.00	295	-60		No	significant inte	ersections	
BI0218	696,228.505	4,546,881.286	690.34	37.00	295	-60	17	18	1	0.87	0.061
BI0219	696,238.080	4,546,876.899	690.49	37.00	295	-60	11	12	1	0.87	0.067
BI0220	696,016.043	4,546,620.171	669.02	22.00	285	-60	0	10	10	8.66	0.075
							15	16	1	0.87	0.163
							19	20	1	0.87	0.063
BI0221	696,025.725	4,546,617.561	668.60	22.00	285	-60	2	3	1	0.87	0.113
							15	22	7	6.06	0.078
BI0222	696,035.018	4,546,615.047	668.95	22.00	285	-60	9	10	1	0.87	0.082
BI0223	696,008.446	4,546,591.160	668.43	22.00	285	-60	0	3	3	2.60	0.306
							12	16	4	3.46	0.223
							21	22	1	0.87	0.053
BI0224	696,018.001	4,546,588.549	668.41	22.00	285	-60	2	3	1	0.87	0.090
							8	9	1	0.87	1.027
							11	12	1	0.87	0.056
BI0225	696,027.539	4,546,585.973	668.15	22.00	285	-60	6	9	3	2.60	0.326
							12	14	2	1.73	0.074
							16	17	1	0.87	0.113
							20	21	1	0.87	0.084
BI0226	696,023.848	4,546,649.138	669.55	22.00	285	-60	0	3	3	2.60	0.220
							8	12	4	3.46	0.120
BI0227	696,033.774	4,546,646.498	669.40	22.00	285	-60	1	3	2	1.73	0.088
							9	19	10	8.66	0.196
						incl.	18	19	1	0.87	1.210
							21	22	1	0.87	0.117
BI0228	696,043.168	4,546,643.909	668.85	22.00	285	-60	21	22	1	0.87	0.861
BI0229	696,019.978	4,546,634.679	669.39	22.00	285	-60	1	9	8	6.93	0.224
						incl.	8	9	1	0.87	1.027
BI0230	696,029.620	4,546,632.051	669.26	22.00	285	-60	3	17	14	12.12	0.239
						incl.	14	15	1	0.87	1.986
							20	22	2	1.73	0.068
BI0231	696,050.776	4,546,641.774	668.62	22.00	105	-60	3	12	9	7.79	0.130
							21	22	1	0.87	0.256
BI0232	696,021.226	4,546,784.876	691.28	47.00	105	-60		No	significant inte	ersections	
BI0233	696,011.682	4,546,787.305	691.29	47.00	105	-60	19	20	1	0.87	1.431

BI0234	696,002.270	4,546,789.819	691.23	47.00	105	60		No	significant int	ersections	1
	696,002.270	4,546,789.819	691.23 691.03	47.00	105	-60	15	17			0.190
BI0235	,				105	-60	15		2	1.73	0.186
BI0236	696,027.223	4,546,797.687	691.64	41.00	105	-60			significant int		
BI0237	696,017.199	4,546,800.254	691.50	47.00	105	-60			significant int		0.074
BI0238	696,007.603	4,546,802.798	690.92	47.00	105	-60	5	6	1	0.87	0.071
BI0239	695,997.775	4,546,805.613	690.87	47.00	105	-60			significant int		
BI0240	695,988.078	4,546,808.240	690.74	47.00	105	-60	22	26	significant inte		0.202
BI0241	696,089.416	4,547,154.626	710.93	71.00	105	-60	23		3	2.60	0.292
							28	30	2	1.73	0.058
							41	42	1	0.87	0.153
							51	52	1	0.87	0.114
							55	59	4	3.46	0.068
BI0242	696,079.761	4,547,157.212	711.02	71.00	105	-60	24	26	2	1.73	0.164
							37	38	1	0.87	1.390
BI0243	696,070.009	4,547,159.870	710.47	71.00	105	-60	32	33	1	0.87	0.111
							39	40	1	0.87	0.052
							53	54	1	0.87	0.496
							66	67	1	0.87	0.090
BI0244	696,060.220	4,547,162.370	710.31	71.00	105	-60	47	48	1	0.87	0.143
							69	71	2	1.73	0.418
BI0245	696,087.438	4,547,124.144	710.59	71.00	105	-60	9	10	1	0.87	0.179
							23	24	1	0.87	0.086
							30	31	1	0.87	0.060
							37	38	1	0.87	1.135
							49	50	1	0.87	0.055
BI0246	696,077.627	4,547,126.884	709.82	49.00	105	-60	20	23	3	2.60	0.177
							33	34	1	0.87	2.213
							36	37	1	0.87	0.090
							46	47	1	0.87	0.079
BI0247	696,067.364	4,547,129.550	709.08	71.00	105	-60	24	25	1	0.87	0.052
							53	56	3	2.60	0.334
							67	68	1	0.87	0.157
BI0248	696,058.390	4,547,131.846	708.31	71.00	105	-60	6	7	1	0.87	0.067
							36	37	1	0.87	0.757
							44	45	1	0.87	0.052
BI0249	696,085.377	4,547,093.624	709.91	70.00	105	-60	15	16	1	0.87	0.142
							29	30	1	0.87	0.250
BI0250	696,075.538	4,547,096.270	708.79	69.00	105	-60	8	9	1	0.87	0.072
	,	, ,					47	48	1	0.87	1.686
							51	54	3	2.60	0.083
BI0251	696,065.845	4,547,098.905	707.49	68.00	105	-60	20	21	1	0.87	0.059
		,- ,			200	20	31	32	1	0.87	0.082
BI0252	696,056.323	4,547,101.459	706.30	68.00	105	-60	30	31	1	0.87	0.066
0.0252		,=,=0105			105	20	50	51	1	0.87	0.551
BI0253	696,081.417	4,547,063.680	709.26	70.00	105	-60	4	5	1	0.87	0.087
	000,001.417	.,,		,	105	00	27	35	8	6.93	0.106
							49	50	8 1	0.93	0.070
BI0254	696,071.580	4,547,066.285	708.37	68.00	105	-60	14	15	1	0.87	0.070
010234	030,071.380	7,347,000.205	/00.3/	08.00	105	-00	14 46	47	1	0.87	0.208
BI0255	696,062.305	4,547,068.937	707.64	67.00	105	-60	38	39	1	0.87	0.208
DI0255	090,002.305	4,347,008.937	/0/.04	07.00	102	-00	ъŏ	22	Т	0.87	0.130

1							45	48	3	2.60	0.255
BI0256	696.052.711	4,547,071.306	707.04	67.00	105	-60	11	12	1	0.87	0.054
0.0200		.,			200		34	37	3	2.60	1.057
							55	56	1	0.87	0.135
							63	65	2	1.73	0.079
BI0257	696,077.902	4,547,066.306	708.63	70.00	105	-45	6	7	1	0.87	0.069
		.,,			200	10	9	10	1	0.87	0.172
							14	16	2	1.73	0.353
							23	28	5	4.33	0.214
							52	53	1	0.87	0.077
							59	61	2	1.73	0.324
							65	66	1	0.87	0.061
							68	70	2	1.73	0.728
BI0258	696,085.925	4,547,094.541	709.91	80.00	105	-45	4	6	2	1.73	0.180
	,	, ,					18	21	3	2.60	0.145
							29	36	7	6.06	0.625
						incl.	29	30	1	0.87	3.215
							69	70	1	0.87	0.051
							77	78	1	0.87	0.053
BI0259	696,074.123	4,547,034.656	709.76	70.00	105	-60	28	29	1	0.87	0.088
							32	33	1	0.87	0.088
							37	40	3	2.60	0.071
							44	46	2	1.73	0.140
BI0260	696,065.780	4,547,036.872	708.92	70.00	105	-60	51	52	1	0.87	0.293
	,						61	62	1	0.87	0.117
							65	66	1	0.87	0.169
BI0261	696,056.340	4,547,039.463	707.46	66.00	105	-60	61	62	1	0.87	0.060
BI0262	696,046.655	4,547,041.937	706.56	66.00	105	-60		No	significant int	ersections	
BI0263	696,095.455	4,547,106.627	710.11	72.00	105	-45	5	8	3	2.60	0.351
							12	13	1	0.87	0.064
							21	22	1	0.87	0.270
							58	60	2	1.73	0.101
							71	72	1	0.87	0.082
BI0264	696,083.907	4,547,079.298	709.52	27.00	105	-45	16	17	1	0.87	0.063
							19	24	5	4.33	0.182
BI0265	696,058.053	4,546,949.090	689.60	47.00	105	-60		No	significant int	ersections	
BI0266	696,047.339	4,546,951.608	689.76	47.00	105	-60		No	significant int	ersections	
BI0267	696,037.060	4,546,951.343	689.95	47.00	105	-60		No	significant int	ersections	
BI0268	696,058.488	4,546,914.539	689.82	38.00	105	-45	17	18	1	0.87	0.359
BI0269	696,057.269	4,546,914.865	689.74	47.00	105	-60		No	significant int	ersections	
BI0270	696,046.628	4,546,917.737	689.68	47.00	105	-60		No	significant int	ersections	
BI0271	696,036.933	4,546,920.303	689.84	47.00	105	-60	24	25	1	0.87	0.109
BI0272	696,027.345	4,546,922.799	689.78	47.00	105	-60	6	7	1	0.87	0.092
							34	35	1	0.87	0.090
BI0273	696,017.594	4,546,925.404	689.89	47.00	105	-60		No	significant int	ersections	
BI0274	696,051.068	4,546,885.430	690.94	40.00	105	-45	11	12	1	0.87	0.114
							14	15	1	0.87	0.055
BI0275	696,050.238	4,546,885.690	690.96	47.00	105	-60	21	23	2	1.73	0.057
							35	36	1	0.87	0.321
BI0276	696,040.630	4,546,888.217	691.14	47.00	105	-60	25	27	2	1.73	0.228

BI0278	696,050.338	4,546,685.932	655.82	45.00	105	-45	2	3	1	0.87	0.074
					105	-45	2	5	T	0.87	0.074
							5	9	4	3.46	1.083
						incl.	5	6	1	0.87	3.887
							13	19	6	5.20	0.292
							32	33	1	0.87	0.064
BI0279	696,046.252	4,546,686.917	655.87	49.00	105	-60	0	17	17	14.72	0.385
						incl.	13	14	1	0.87	1.223
							22	26	4	3.46	0.061
							35	37	2	1.73	0.316
							40	41	1	0.87	0.246
BI0280	696,036.577	4,546,689.567	655.99	43.00	105	-60	2	3	1	0.87	0.075
							6	9	3	2.60	1.425
						incl.	8	9	1	0.87	3.684
							12	13	1	0.87	0.085
							16	18	2	1.73	0.093
							21	22	1	0.87	0.957
							33	36	3	2.60	2.541
						incl.	33	35	2	1.73	3.769
							39	40	1	0.87	0.081
							42	43	1	0.87	0.062
BI0281	696,026.966	4,546,692.204	655.91	44.00	105	-60	15	16	1	0.87	0.416
	,.	,,					19	20	1	0.87	0.099
							27	28	1	0.87	0.146
							32	33	1	0.87	0.051
							38	44	6	5.20	0.608
						incl.	41	42	1	0.87	2.550
BI0282	696,111.172	4,546,697.655	660.82	37.00	285	-60	0	1	1	0.87	0.093
	,						21	22	1	0.87	0.142
							25	26	1	0.87	0.233
BI0283	696,101.790	4,546,700.198	660.42	37.00	285	-60	3	4	1	0.87	0.228
	,	,- ,					6	7	1	0.87	0.092
							36	37	1	0.87	0.140
BI0284	696,092.092	4,546,702.785	659.45	48.00	285	-60	17	21	4	3.46	1.062
						incl.	18	20	2	1.73	1.961
							24	25	1	0.87	0.056
							40	41	1	0.87	0.055
BI0285	696,082.516	4,546,705.266	658.30	48.00	285	-60	7	8	1	0.87	0.083
						-	31	32	1	0.87	0.055
							41	42	1	0.87	1.543
BI0286	696,073.016	4,546,707.870	657.52	38.00	285	-60	4	6	2	1.73	0.829
						incl.	4	5	1	0.87	1.487
							16	17	1	0.87	0.051
							19	24	5	4.33	0.097
							27	38	11	9.53	0.668
						incl.	31	32	1	0.87	4.595
BI0287	696,053.671	4,546,713.091	656.77	33.00	285	-60	1	3	2	1.73	0.069
		,, 10.001		0	200	50	6	7	1	0.87	0.132
							12	16	4	3.46	0.364

							28	33	5	4.33	0.770
						incl.	28	30	2	1.73	1.890
BI0288	696,063.160	4,546,710.479	656.88	35.00	285	-60	8	11	3	2.60	0.102
							17	30	13	11.26	0.575
						incl.	17	18	1	0.87	1.091
						incl.	24	25	1	0.87	4.728
BI0289	696,060.748	4,546,668.303	655.14	72.00	285	-60	2	4	2	1.73	0.809
						incl.	2	3	1	0.87	1.548
							8	15	7	6.06	0.502
						incl.	10	11	1	0.87	2.070
							21	39	18	15.59	0.288
						incl.	35	36	1	0.87	1.713
							44	47	3	2.60	0.119
							50	52	2	1.73	0.171
							66	69	3	2.60	1.657
						incl.	66	67	1	0.87	4.429
BI0290	696,062.626	4,546,732.456	656.21	33.00	285	-60	3	5	2	1.73	0.294
							11	18	7	6.06	0.822
						incl.	12	13	1	0.87	2.418
						incl.	16	17	1	0.87	2.233
							21	22	1	0.87	0.296
							25	28	3	2.60	0.448
BI0291	696,061.604	4,546,732.687	656.26	38.00	285	-45	5	6	1	0.87	0.292
							11	14	3	2.60	0.412
							18	20	2	1.73	0.451
							26	27	1	0.87	0.100
							36	37	1	0.87	0.069
BI0292	696,072.228	4,546,729.910	656.26	34.00	285	-60	8	21	13	11.26	0.497
						incl.	17	18	1	0.87	1.558
						incl.	19	20	1	0.87	1.488
							32	33	1	0.87	1.574
BI0293	696,081.609	4,546,727.379	656.72	35.00	285	-60	0	5	5	4.33	1.402
						incl.	2	3	1	0.87	6.516
							10	35	25	21.65	0.462
						incl.	18	19	1	0.87	1.537
						incl.	24	25	1	0.87	7.044
BI0294	696,091.035	4,546,724.820	656.93	36.00	285	-60	6	26	20	17.32	0.346
						incl.	6	7	1	0.87	1.082
						incl.	9	10	1	0.87	1.014
						incl.	22	23	1	0.87	2.713
							31	36	5	4.33	0.363
DIODOF		4 5 4 5 7 4 5 5 9 9	655.04	25.00	205	incl.	35	36	1	0.87	1.423
BI0295	696,060.181	4,546,745.592	655.91	35.00	285	-60	4	5	1	0.87	0.396
						in -l	18	21	3	2.60	2.172
						incl.	18	19	1	0.87	4.851
						incl.	20	21	1	0.87	1.540
							25	28	3	2.60	0.231
DIODOC	COC 0C0 050	4 5 4 6 7 4 2 0 2 4	CEE C0	20.00	205	60	31 0	33 1	2	1.73	0.130
BI0296	696,069.858	4,546,742.834	655.68	29.00	285	-60				0.87	0.062
							8	12	4	3.46	0.168

							47	24		2.46	0.200
						in al	17	21	4	3.46	0.369
						incl.	17	18	1	0.87	1.087
BI0297	696,079.352	4,546,740.279	655.82	29.00	285	-60	28 16	29 26	1 10	0.87	0.051
	696,079.352		656.21	29.00	285	-60	0	8	8	8.66	0.095
BI0298	696,088.965	4,546,737.817	656.21	29.00	285	-60	0 13		8 8	6.93	0.096
							26	21 27	8 1	6.93 0.87	0.115 0.164
BI0299	696,093.480	4,546,752.046	656.20	43.00	285	-60	3	41	38	32.91	0.164
BI0299	090,095.460	4,540,752.040	030.20	45.00	265	-60 incl.	12	13	1	0.87	1.177
						incl.	12	15	1	0.87	2.001
						incl.	21	22	1	0.87	2.853
						incl.	38	39	1	0.87	2.855
BI0300	696,102.726	4,546,749.567	655.78	54.00	285	-60	8	9	1	0.87	1.406
BI0300	090,102.720	4,540,749.507	033.78	54.00	285	-00	8 17	23	6	5.20	0.213
							26	23 54	28	24.25	0.213
						incl.	20	28	1	0.87	1.880
BI0301	696,064.185	4,546,760.040	655.63	30.00	285	-45	10	11	1	0.87	0.119
BI0301	090,004.185	4,540,700.040	055.05	30.00	265	-45	10	11	1	0.87	0.119
							14	19	1	0.87	0.190
							24	25	1	0.87	0.810
							24	29	1	0.87	0.075
BI0302	696,065.431	4,546,759.825	655.62	38.00	285	-60	10	11	1	0.87	0.064
D10302	090,003.431	4,340,739.825	033.02	36.00	205	-00	15	23	8	6.93	0.536
						incl.	15	17	8 1	0.93	2.704
BI0303	696,073.743	4,546,757.555	655.58	32.00	285	-60	9	17	3	2.60	0.136
00000	050,075.745	+,5+0,757.555	055.50	52.00	205	-00	15	16	1	0.87	0.130
							22	27	5	4.33	0.277
BI0304	696,083.482	4,546,755.006	655.64	34.00	285	-60	5	10	5	4.33	0.098
510504	000,0001.02	1,5 10,7 551666	000101	0.000	205	00	13	16	3	2.60	0.197
							20	23	3	2.60	0.175
							26	34	8	6.93	0.352
						incl.	30	31	1	0.87	1.321
BI0305	696,103.073	4,546,765.239	656.26	55.00	285	-60	9	23	14	12.12	0.171
	,	,,					27	43	16	13.86	0.456
						incl.	31	32	1	0.87	2.594
						incl.	35	36	1	0.87	1.480
							45	46	1	0.87	0.089
							49	53	4	3.46	0.289
BI0306	696,112.693	4,546,762.493	655.84	67.00	285	-60	2	4	2	1.73	0.087
							6	7	1	0.87	0.295
							12	13	1	0.87	0.087
							16	17	1	0.87	0.066
							20	27	7	6.06	0.338
						incl.	25	26	1	0.87	1.248
							29	30	1	0.87	0.081
							34	48	14	12.12	0.283
							52	67	15	12.99	0.220
						incl.	52	53	1	0.87	1.003
BI0307	696,121.808	4,546,760.167	656.18	67.00	285	-60	2	5	3	2.60	0.161
DI0207	050,121.000	.,		07.00	205	00	-	5	0	2.00	0.101

							18	19	1	0.87	0.172
							21	22	1	0.87	0.060
							30	31	1	0.87	0.092
							37	45	8	6.93	0.156
							49	67	18	15.59	0.394
						incl.	65	67	2	1.73	1.082
BI0308	696,132.251	4,546,757.329	656.49	67.00	285	-60	13	16	3	2.60	0.200
							22	23	1	0.87	0.392
							29	30	1	0.87	0.234
							35	37	2	1.73	0.136
							48	49	1	0.87	0.793
							52	53	1	0.87	0.234
							56	64	8	6.93	0.661
						incl.	56	57	1	0.87	1.630
						incl.	59	60	1	0.87	1.279
						incl.	62	63	1	0.87	1.029
							66	67	1	0.87	0.053
BI0309	696,124.353	4,546,775.088	656.01	66.00	285	-60	4	5	1	0.87	0.126
							16	17	1	0.87	0.110
							21	29	8	6.93	0.081
							32	43	11	9.53	0.165
							48	66	18	15.59	0.249
BI0310	696,121.048	4,546,695.054	660.82	40.00	285	-60	37	39	2	1.73	0.128
BI0311	696,036.740	4,546,827.043	680.11	35.00	105	-45	34	35	1	0.87	1.018
BI0312	696,105.196	4,546,780.212	655.79	57.00	285	-60	3	13	10	8.66	0.157
							20	27	7	6.06	0.530
						incl.	24	25	1	0.87	2.655
							30	47	17	14.72	0.411
						incl.	37	38	1	0.87	1.375
						incl.	39	40	1	0.87	2.769
							50	51	1	0.87	0.078
							53	57	4	3.46	0.073
BI0313	696,036.756	4,546,827.217	680.06	36.00	105	-60		No	significant int	ersections	
BI0314	696,027.076	4,546,829.779	680.09	36.00	105	-60		No	significant int	ersections	
BI0315	696,017.353	4,546,832.505	680.02	36.00	105	-60		No	significant int	ersections	
BI0316	696,007.926	4,546,834.913	680.43	36.00	105	-60	29	30	1	0.87	0.666
BI0317	696,058.647	4,546,976.513	690.12	56.00	105	-45	43	45	2	1.73	0.076
BI0318	696,057.378	4,546,976.902	690.20	47.00	105	-60	34	35	1	0.87	0.072
BI0319	696,048.571	4,546,979.197	690.26	47.00	105	-60		No	significant int	ersections	
BI0320	696,038.846	4,546,981.867	690.49	47.00	105	-60		No	significant int	ersections	
BI0321	696,029.363	4,546,984.345	690.42	47.00	105	-60	7	8	1	0.87	0.075
BI0322	696,042.635	4,546,856.624	680.16	40.00	105	-45	9	10	1	0.87	0.072
							39	40	1	0.87	0.091
BI0323	696,041.591	4,546,856.926	680.20	36.00	105	-60	1	2	1	0.87	0.063
							27	29	2	1.73	1.297
						incl.	28	29	1	0.87	2.539
							33	34	1	0.87	0.340
BI0324	696,033.152	4,546,859.250	679.81	38.00	105	-60	27	29	2	1.73	0.666
	,					incl.	28	29	1	0.87	1.217
BI0325	696,023.088	4,546,861.787	680.06	36.00	105	-60	6	7	1	0.87	0.096
1		, ,,					-	-	-		1

							22	23	1	0.87	0.129
BI0326	696,013.693	4,546,864.399	679.91	36.00	105	-60	7	8	1	0.87	0.296
							27	28	1	0.87	0.053
BI0327	696,004.144	4,546,866.848	679.77	36.00	105	-60		No	significant int	ersections	
BI0328	695,994.087	4,546,869.661	679.84	56.00	105	-60		No	significant int	ersections	
BI0329	696,021.480	4,546,893.395	679.94	36.00	105	-60		No	significant int	ersections	
BI0330	696,016.043	4,546,894.869	679.99	58.00	105	-60	5	6	1	0.87	0.105
							15	16	1	0.87	0.061
							31	32	1	0.87	0.356
							54	55	1	0.87	0.055
BI0331	695,988.637	4,546,840.090	680.16	58.00	105	-60	2	3	1	0.87	0.058
BI0332	695,998.068	4,546,837.366	679.43	36.00	105	-60	22	23	1	0.87	0.158
							33	34	1	0.87	0.152
BI0333	696,114.649	4,546,777.650	656.06	77.00	285	-60	12	13	1	0.87	0.546
							19	24	5	4.33	1.164
						incl.	21	22	1	0.87	4.319
							28	45	17	14.72	0.574
						incl.	29	30	1	0.87	4.105
						incl.	38	39	1	0.87	1.415
						incl.	43	44	1	0.87	1.302
							46	60	14	12.12	0.136
							64	77	13	11.26	0.089
BI0334	696,120.709	4,546,791.972	655.39	80.00	285	-60	23	25	2	1.73	0.393
							29	54	25	21.65	0.349
						incl.	45	46	1	0.87	1.666
							58	63	5	4.33	0.174
							66	67	1	0.87	0.172
							72	78	6	5.20	0.207
BI0335	696,092.855	4,546,765.739	656.51	52.00	285	-60	0	1	1	0.87	0.078
							6	21	15	12.99	0.387
						incl.	10	11	1	0.87	1.465
						incl.	15	16	1	0.87	1.547
							26	33	7	6.06	0.268
							36	41	5	4.33	0.119
							44	45	1	0.87	0.077
BIODOC		4 5 4 6 70 4 570	CEE 40	20.00	205		50	52 No	2	1.73	0.056
BI0336	696,110.968	4,546,794.573	655.40	20.00	285	-60			significant int		
BI0337	696,127.676	4,546,804.945	654.88 655.29	21.00 85.00	285	-60 -60			significant int		0.110
BI0338	696,137.759	4,546,802.314	655.29	85.00	285	-60	5 14	6	1 1	0.87 0.87	0.119
								15			0.064
							18 31	19 38	1 7	0.87 6.06	0.082 0.074
							31 41	38 85	44		0.074
						incl	41 41	85 43	44 2	38.11 1.73	
						incl. incl.	41 46	43 47	2 1	0.87	3.440 1.208
							46 70				
BI0339	606 147 701	1 546 901 679	654.73	88.00	285	incl.	40	71 48	1 8	0.87	1.146 0.083
DIUSSA	696,147.791	4,546,801.678	054.75	88.00	280	-60	40 51	48 84	8 33	28.58	0.083
						incl.	51 60	84 61	33 1	28.58	0.460 2.836
BI0340	696,117.987	4,546,807.430	654.94	18.00	285	-60	00		significant int		2.030
DI0340	090,117.987	4,540,607.430	034.94	18.00	285	-00		NO	, signinedite litt	CI 30010115	

·											
BI0341	696,157.679	4,546,799.059	654.45	88.00	285	-60	38	39	1	0.87	0.092
							47	48	1	0.87	0.058
							53	54	1	0.87	0.097
							57	82	25	21.65	0.237
							86	88	2	1.73	0.304
BI0342	696,136.225	4,546,818.295	654.75	88.00	285	-60	11	14	3	2.60	0.639
							11	12	1	0.87	1.090
							20	21	1	0.87	0.075
							25	26	1	0.87	0.051
							29	65	36	31.18	0.524
						incl.	38	39	1	0.87	1.243
						incl.	46	47	1	0.87	1.377
						incl.	52	53	1	0.87	1.358
						incl.	61	62	1	0.87	4.752
							68	82	14	12.12	0.154
							85	87	2	1.73	0.167
BI0343	696,146.036	4,546,815.521	654.75	88.00	285	-60	8	9	1	0.87	0.385
	,	<i>, ,</i>					14	15	1	0.87	0.095
							20	21	1	0.87	0.060
							33	38	5	4.33	0.230
							39	64	25	21.65	0.236
							65	75	10	8.66	0.627
						incl.	66	67	1	0.87	1.430
						incl.	68	69	1	0.87	2.344
						incl.	74	75	1	0.87	1.272
						inci.	77	80	3	2.60	0.064
BI0344	696,155.837	4,546,812.948	654.52	88.00	285	-60	39	42	3	2.60	0.072
010544	050,155.057	4,540,012.540	034.32	00.00	205	-00	46	42	2	1.73	0.072
							50	52	2	1.73	0.069
							55	78	23	19.92	0.251
						incl.	68	69	1	0.87	1.344
						mer.	81	88	7		0.129
BI0345	696,143.628	4 546 822 105	654.19	88.00	285	-60	12	13	1	6.06 0.87	0.129
BI0545	090,143.028	4,546,832.105	654.19	88.00	285	-60					
							18 30	22	4 2	3.46	0.234
								32		1.73	0.160
						i!	35	55	20	17.32	0.317
						incl.	38	39	1	0.87	1.860
							61	67	6	5.20	0.352
						incl.	64	65	1	0.87	1.279
							70	71	1	0.87	0.111
							77	78	1	0.87	0.068
							81	83	2	1.73	0.137
BI0346	696,153.202	4,546,829.398	653.85	93.00	285	-60	5	6	1	0.87	0.140
							27	28	1	0.87	0.685
							31	32	1	0.87	0.156
							36	37	1	0.87	1.737
							41	42	1	0.87	0.882
							47	57	10	8.66	0.195
							59	60	1	0.87	0.089
							67	73	6	5.20	0.054

BI0347	696,163.068	4,546,826.896	653.80	95.00	285	-60	43	45	2	1.73	0.119
							48	50	2	1.73	0.305
							60	77	17	14.72	0.166
						incl.	75	76	1	0.87	1.057
BI0348	696,146.189	4,546,849.756	654.30	82.00	285	-60	11	12	1	0.87	0.093
							15	16	1	0.87	0.175
							24	48	24	20.78	0.221
						incl.	40	41	1	0.87	1.351
							51	74	23	19.92	0.373
						incl.	51	52	1	0.87	1.881
						incl.	57	58	1	0.87	1.116
						incl.	65	66	1	0.87	1.380
							78	79	1	0.87	0.082
BI0349	696,091.557	4,546,731.383	655.20	88.00	285	-60	5	6	1	0.87	0.100
							8	21	13	11.26	0.109
							25	50	25	21.65	0.431
						incl.	32	34	2	1.73	2.978
						incl.	41	42	1	0.87	1.308
							54	55	1	0.87	0.114
							60	61	1	0.87	0.061
							66	68	2	1.73	0.249
							77	78	1	0.87	0.083
							81	82	1	0.87	0.070
BI0350	696,101.627	4,546,728.631	655.31	88.00	285	-60	9	10	1	0.87	0.078
							12	13	1	0.87	0.267
							24	30	6	5.20	0.462
						incl.	29	30	1	0.87	1.495
							33	60	27	23.38	0.246
							66	68	2	1.73	0.056
							73	75	2	1.73	0.177
							83	84	1	0.87	0.370
BI0351	696,110.101	4,546,723.144	655.21	88.00	285	-60	38	39	1	0.87	0.054
							42	43	1	0.87	0.083
							45	74	29	25.11	0.318
						incl.	46	47	1	0.87	1.303
						incl.	51	52	1	0.87	1.787
							77	87	10	8.66	0.106
BI0352	696,155.615	4,546,847.196	654.29	86.00	285	-60	21	30	9	7.79	0.118
							33	35	2	1.73	0.060
							37	39	2	1.73	0.309
							43	54	11	9.53	0.204
							59	62	3	2.60	0.230
							69	81	12	10.39	0.225
BI0353	696,165.645	4,546,844.481	654.71	92.00	285	-60	78	79	1	0.87	0.097
							81	87	6	5.20	0.389
BI0354	696,151.029	4,546,735.809	660.69	36.00	285	-60	12	13	1	0.87	0.304
BI0355	696,158.710	4,546,732.133	660.95	36.00	285	-60			significant inte		
BI0356	696,110.465	4,546,792.617	655.49	77.00	285	-60	0	1	1	0.87	0.053
							5	18	13	11.26	0.167
						incl.	17	18	1	0.87	1.116

							21	61	40	34.64	0.309
							22	23	1	0.87	1.053
						incl.	25	27	2	1.73	1.289
						incl.	37	38	1	0.87	1.071
						incl.	42	43	1	0.87	2.098
							68	72	4	3.46	0.279
							75	77	2	1.73	0.052
BI0357	696,107.579	4,546,810.413	654.95	68.00	285	-45	5	7	2	1.73	0.069
							13	22	9	7.79	0.093
							27	29	2	1.73	0.795
						incl.	27	28	1	0.87	1.532
							37	40	3	2.60	0.377
							47	60	13	11.26	0.291
						incl.	53	54	1	0.87	1.458
						incl.	56	57	1	0.87	1.241
							65	68	3	2.60	0.952
						incl.	67	68	1	0.87	2.236
BI0358	696,108.703	4,546,810.056	655.11	75.00	285	-60	8	9	1	0.87	0.054
							12	38	26	22.52	0.139
							41	51	10	8.66	0.092
							54	55	1	0.87	0.102
							62	63	1	0.87	0.066
							66	69	3	2.60	0.106
							72	75	3	2.60	0.667
						incl.	72	73	1	0.87	1.659
BI0359	696,083.612	4,546,770.174	656.13	53.00	285	-45	9	14	5	4.33	0.192
							26	27	1	0.87	0.127
							30	33	3	2.60	0.064
							37	40	3	2.60	0.064
							44	49	5	4.33	0.087
							51	53	2	1.73	0.074
BI0360	696,084.546	4,546,769.945	656.11	20.00	285	-60	0	7	7	6.06	0.430
BI0361	696,095.158	4,546,782.850	655.48	33.00	285	-45	0	19	19	16.45	0.165
							21	22	1	0.87	0.090
							24	25	1	0.87	0.091
BI0362	696,096.303	4,546,782.499	655.51	59.00	285	-60	0	12	12	10.39	0.146
							17	18	1	0.87	0.389
							22	23	1	0.87	1.265
							27	32	5	4.33	0.248
							34	35	1	0.87	0.098
							38	39	1	0.87	0.639
							51	54	3	2.60	0.051
							58	59	1	0.87	0.179
BI0363	696,101.113	4,546,796.143	655.45	81.00	285	-45	11	14	3	2.60	0.137
							23	29	6	5.20	1.077
						incl.	23	24	1	0.87	1.319
						incl.	25	26	1	0.87	4.720
							34	36	2	1.73	1.011
						incl.	35	36	1	0.87	1.911
							45	56	11	9.53	0.310
										2.00	

B0354 0H, 10.111 4/54, 795, 701 055, 54 67, 20 20 67 64 14 142 10 0 68 1 0.37 1.47 1.37 1.6 0.37 0.57												
B0354 95,302,111 4,556,705,802 855.54 97,00 285 40 3 31 28 34.25 57,00 B0354 95,302,111 4,556,705,802 855.54 97,00 285 40 3 31 28 34.25 57,70 B0355 95,117 520 4,556,055,853 655.50 31,00 285 60 21 3 4 0,037 0,138 B0356 69,117 520 4,546,056,553 655.20 31,00 285 60 21 3 0 0,362 0,332 B0356 69,117 720 4,466,043,500 67,00 285 60 21 3 0 0,322 B0357 69,137 703 4,466,043,500 67,00 15,00 285 60 21 3 0 0,027 0,293 B03295 69,013 7/8 4,546,647,700 647,22 57,00 285 60 7 8 1 0,077 0,31 0,077 0,031							incl.	45	46	1	0.87	1.447
B0364 666,012.011 4,546,785,801 655.54 67.00 285 60 3 1 28 1 0.37 1.776 80364 696,102.011 4,546,785,801 655.54 67.00 285 60 3 11 0.37 1.776 80364 696,117.970 4,546,806.658 655.00 31.00 285 400 2 1 1 0.37 0.736 80366 696,117.970 4,546,806.658 655.00 31.00 285 400 2 3 2.60 0.047 80366 696,117.970 4,546,806.658 655.00 31.00 285 400 2 3 2.60 0.047 80366 696,117.970 4,546,806.202 656.83 1.600 285 40 2 3 2.60 0.042 80376 696,117.970 4,546,902.766 65.30 1.007 2.800 285 40 1 1.037 1.203 80376 696,033.726								66	70	4	3.46	1.851
B0364 696,107.11 4,546,795.801 655.54 07.00 285 -60 3 31 28 24,25 0.579 incl. 15 16 1 0.87 1.776 incl. 29 30 1 0.87 1.776 incl. 29 30 1 0.87 0.111 30 40 1 0.87 0.215 30 34 1 0.87 0.215 30 34 1 0.87 0.215 30 34 1 0.87 0.235 90365 69(117/20) 4.546,900.00 31.00 285 60 21 31 1 0.867 0.0115 90366 69(113/22) 4.546,931.00 285 60 7 8 1 0.87 0.733 90368 69(13/22) 4.546,931.00 285.00 10 11 1 0.87 0.512 incl 32 60							incl.	67	68	1	0.87	
B0365 695,117 020 4.546,605,437 647,12 9 30 1 0.87 1.176 B0365 695,117 020 4.546,605,437 647 1 0.87 0.115 B0365 695,117 020 4.546,604,002 615,488 10.00 285 60 21 31 10 8.66 0.318 B0365 695,117 020 4.546,604,002 615,488 10.00 285 60 9 12 3 2.60 0.049 B0365 695,117 020 4.546,604,002 615,488 10.00 285 40 7 8 1 0.07 0.232 B0366 696,133.70 4.546,642,700 65,60 15.00 285 40 18 19 1 0.87 0.330 B0370 696,053.726 4.546,642,730 647,22 57.00 285 40 18 10 1.07 1.087 0.330 B0370 696,053.726 4.73 57.00 285 60								73	79	6	5.20	0.107
BR0365 664,179,20 4,546,666,658 655,00 31,00 285 40 1 0.87 0.137 BR0365 664,179,20 4,546,666,658 655,00 31,00 285 40 21 33 40 1 0.87 0.132 BR0365 664,179,20 4,546,666,658 655,00 31,00 285 40 9 12 3 2,00 0.048 BR0366 664,127,820 4,546,666,658 655,00 31,00 285 40 9 12 3 2,00 0.048 BR0366 664,127,820 4,546,662,276 64,75 24,60 28 40 7 8 1 0.87 0.330 BR0366 665,127,26 4,546,662,376 647,22 57,00 285 40 7 8 1 0.87 0.330 BR0370 696,653,726 447,35 57,00 285 40 4 1 287 1 0.87 1.333 BR	BI0364	696,102.111	4,546,795.801	655.54	67.00	285	-60		31			0.579
ind. 29 30 1 0.87 1.111 39 40 1 0.87 0.111 39 40 1 0.87 0.125 50 51 1 0.87 0.125 50 51 1 0.87 0.325 800365 66(17) 209 4,546,806.658 65.00 31 10 8.66 1.131 800365 66(17) 209 4,546,806.658 65.00 225 60 9 12 3 2.60 0.049 800367 69(17) 709 4,546,802.39 65.00 15.00 245 60 9 12 3 2.60 0.049 80268 69(33) 72 4,546,802.790 647.22 97.00 245 60 7 8 1 0.87 0.330 80369 696,93.726 4,546,582.765 647.25 57.00 285 60 8 1 0.87 1.122 10 666,031.806 4,546								15	16			10.446
B10365 995,117.920 4.546,056.581 655.00 3100 285 -60 9 12 3 2.60 0.87 B10365 995,127.89 4.546,056.581 655.00 285 -60 9 12 3 2.60 0.049 B10367 696,137.82 4.546,020.22 655.00 285 -60 9 12 3 2.60 0.049 B10368 696,137.82 4.546,642.780 647.7 2.80 -60 7 8 1 0.87 0.330 B10386 696,137.82 4.546,642.780 647.22 57.00 285 -60 7 8 1 0.87 0.433 B10386 696,053.726 4.546,642.780 647.22 57.00 285 -60 8 14 6 5.20 0.171 B10370 696,053.86 4.546,642.780 647.22 57.00 285 -60 8 14 1 0.87 1.012 B10370 696,053.86 <td></td>												
BI0365 666,177.09 4,546,606,658 6500 31.00 285 -60 21 31 10 8.66 0.322 BI0365 666,177.09 4,546,606,658 650.0 31.00 285 -60 21 31 10 8.66 0.138 BI0367 666,127.09 4,546,804.002 654.83 10.00 285 -60 9 12 3 2.60 0.049 BI0368 666,127.09 4,546,812.00 655.00 15.00 285 -60 18 19 1 0.87 0.329 BI0369 696,053.76 4,546,642.700 47.22 57.00 285 -60 8 14 6 5.20 0.11 BI0370 696,063.876 4,546,638.765 647.25 57.00 285 -60 8 1 0.87 1.814 BI0370 696,063.876 4,546,638.765 647.35 57.00 285 -60 7 1 0.87 1.814 BI03												
80265 695,117.390 4.546,605.68 655.00 31.00 225 -60 9 12 3 2.60 0.433 80265 695,117.390 4.546,605.68 655.00 215 31 10 0.87 0.233 80266 696,117.80 4.546,805.628 255.00 228 -60 9 12 3 2.60 0.049 80267 696,113.782 4.546,812.780 647.7 280 -60 18 10 0.87 0.233 80268 696,013.726 4.546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 10 11 0.87 0.433 1 0.87 1.121 0.333 10 11 0.87 1.122 0.331 1 0.87 1.121 0.333 10 11 0.87 0.412 0.87 0.411 0.87 0.431 10 1 0.87 0.417 <td0< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td0<>												
Bi0365 665.117 320 4,546.6668 635.00 31.00 285 -60 21 31 10 8.66 0.138 Bi0366 665.117 320 4,546.606.80 656.00 31.00 285 -60 9 12 3 2.60 0.049 Bi0367 656.117 320 4,546.635.300 653.00 15.00 285 -60 7 8 1 0.87 0.330 Bi0366 665.133 376 4,546.642.790 647.22 57.00 285 -60 7 8 1 0.87 0.330 Bi0369 696.053.76 4,346.642.790 647.22 57.00 285 -60 7 8 1 0.87 1.129 Bi0370 696.063.826 4,546.638.765 647.35 57.00 285 -60 4 1 0.87 1.1212 0.333 Bi0370 696.063.826 4,546.638.765 647.35 57.00 285 -60 4 1 0.87 1.814												
B0355 695,117.320 4,546,605.65 655.00 31.0 285 -60 21 31 100 865 0.138 B0366 695,127.69 4,546,602.02 654.38 16.00 285 -60 9 12 3 2.60 0.049 B0367 695,137.762 4,546,602.755 28.00 285 -60 7 8 1 0.87 0.239 B0368 695,137.762 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0369 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0370 696,073.876 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.333 B0370 696,073.876 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.3814												
B0356 660,117.200 4,346,806.653 655.00 31.00 285 460 21 31 10 8.66 0.138 B0356 660,117.60 225 460 9 12 3 2.60 0.049 B0356 666,117.63 4,346,880.000 654.87 28.00 285 460 18 19 1 0.87 0.239 B0356 666,137.62 4,346,883.300 655.00 15.00 28 460 8 14 6 5.20 0.171 B03569 696,033.76 4,346,642.790 647.22 57.00 285 460 8 14 6 5.20 0.171 B03569 696,053.726 4,546,642.790 647.22 57.00 285 40 8 14 0.87 1.132 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.393 B0370 696,072.663 4,546,638.73												
B0366 665.127.63 4.546,632.239 654.75 2800 285 60 9 12 3 2.60 0.039 B0367 661.127.63 4.546,632.239 654.75 2800 285 60 18 19 1 0.87 0.330 B0368 696.133.762 4.546,633.300 655.00 15.00 285 60 7 8 1 0.87 0.039 B0368 696,053.726 4.546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.512 incl. 22 23 1 0.87 1.403 1.129 0.512 incl. 30 31 1 0.87 1.403 1.122 1.033 1.122 1.033 1.122 1.033 1.047 1.814 B0370 696,063.826 4,546,638.765 647.13 57.00 285 460 4 5 1 0.87 1.393 B0371 696,072.663	DIO2CE	COC 117 020	4 5 46 996 659	655.00	21.00	205	<u> </u>					
B0367 696,117.78 4,546,835.300 655.00 15.00 285 -60 18 19 1 0.87 0.239 B0368 696,033.702 4,546,835.300 655.00 15.00 285 -60 7 8 1 0.87 0.099 B0369 696,033.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0369 696,033.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.051 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.931 B0370 696,072.663 4,546,638.747 647.35 57.00 285 -60 4 5 1 0.87 1.939												
B0368 696,133.762 4,546,683.300 695.00 15.00 285 -60 7 8 1 0.87 0.330 B0369 696,033.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0369 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.171 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.814 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.730 B0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 1 0.87 1.730 B0371 696,072.663 4,546,635.437 647.35 57.00 285 -60 7 1 4.346 1.282 B0371 696												
Bi0369 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 52.00 11 1 0.87 0.099 Bi0370 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 52.00 11 0.87 1.299 0.512 Incl. 22 23 1 0.87 3.403 incl. 30 31 1 0.87 3.403 Bi0370 696,053.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.091 incl. 25 26 1 0.87 0.391 incl. 30 31 1 0.87 1.390 incl. 25 26 1 0.87 1.390 incl. 46 52 6 5.20 0.938 incl. 44 47 1 0.87 1.390 incl. 46 52 6<												
BI0369 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.112 100369 696,053.726 4,546,642.790 647.22 57.00 285 -60 8 14 6 5.20 0.512 101.1 30 31 1 0.877 3.403 incl. 30 31 1 0.877 1.122 0.333 100370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.877 1.814 B/0370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.877 1.939 101.1 25 26 1 0.877 1.730 incl. 41 42 1 0.87 1.300 101.1 45 26 5.20 0.333 incl. 49 50 1 0.87 1.299 101.1	BI0368	696,133.762	4,546,835.300	655.00	15.00	285	-60					
B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.39 B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.814 B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.981 B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.814 B10370 696,072.663 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 1.730 Incl. 41 42 1 0.87 1.303 1 0.87 1.303 Incl. 46 52 6 5.20 0.938 1.61. 49 40 1 0.87 1.303 Incl. 45 46 1												
B0370 696,053.826 4,546,635.755 647.35 57.00 285 60 4 5 1 0.87 1.814 B0370 696,053.826 4,546,638.765 647.35 57.00 285 60 4 5 1 0.87 1.814 B0370 696,053.826 4,546,638.765 647.35 57.00 285 60 4 5 1 0.87 0.051 B0370 696,053.826 4,546,638.765 647.35 57.00 285 60 4 5 1 0.87 0.939 B0371 696,072.663 4,546,635.437 647.38 57.00 285 60 7 1 0.87 1.299 B0371 696,072.663 4,546,635.437 647.38 57.00 285 60 7 11 0.87 1.299 B0371 696,072.663 4,546,635.437 647.38 57.00 285 60 7 11 4 3.46 1.282 B0371	BI0369	696,053.726	4,546,642.790	647.22	57.00	285	-60					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
incl. 53 54 1 0.87 1.814 B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.051 B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.051 incl. 25 26 1 0.87 4.339 incl. 30 31 1 0.87 1.730 39 4.2 3 2.60 1.670 incl. 41 42 1 0.87 3.973 incl. 46 52 6 5.20 0.338 incl. 46 52 6 5.20 0.393 B10371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 0.87 0.265 B10371 696,072.663 4,546,635.437 647.32 57.00 285 -60 7 11 0.87							incl.					
B10370 696,063.826 4,546,638.765 647.35 57.00 285 -60 4 5 1 0.87 0.051 23 31 8 6.93 0.981								40	54	14	12.12	0.333
$ \begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$							incl.	53	54	1	0.87	1.814
B10371 696,072.663 4,546,635.437 647.32 57.00 285 -60 7 11 4 3.99 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.973 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.46 1.263 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.46 1.268 Incl. 45 46 1 0.87 2.635 0.99 10.87 0.999 B10371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 Incl. 7 8 1 0.877 0.173 0.177 Incl. 7 8 3 2.60 0.56 Incl. 7 8 3 2.60 0.56 Incl. 45 46 1 0.87	BI0370	696,063.826	4,546,638.765	647.35	57.00	285	-60	4	5	1	0.87	0.051
B10371 696,072.663 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.6 1.30 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.45 1.268 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.45 1.268 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 7 11 4 3.46 1.268 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,655.541 647.32 57.00 28								23	31	8	6.93	0.981
BI0371 696,072.663 4,546,656.541 647.32 57.00 285 -60 7 11 4 3.67 1.263 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 7 11 4 3.67 1.268 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.177 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00							incl.	25	26	1	0.87	4.939
BI0371 696,072.663 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 0.174 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.174 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.174 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 13 14 1 0.87 1.262 1.13 1.144 1.165 1.13 1.13 1.14 1.15 1.155 1.150 1.150 1.150 1.150 1.155 1.150							incl.	30	31	1	0.87	1.730
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,072.663 4,546,656.541 647.32 57.00 285 -60 7 11 0.87 3.305 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134								39	42	3	2.60	1.670
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.269 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,655.541 647.32 57.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>incl.</td><td>41</td><td>42</td><td>1</td><td>0.87</td><td>3.973</td></td<>							incl.	41	42	1	0.87	3.973
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.299 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,655.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,655.541 647.32 57.00								46	52	6	5.20	0.938
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4.3.67 2.635 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4.3.67 0.099 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4.3.67 3.997 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.177 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6							incl.					
BI0371 696,072.63 4,546,635.437 647.38 57.00 285 -60 7 11 4 0.87 0.099 BI0371 696,072.63 4,546,635.437 647.38 57.00 285 -60 7 11 4 0.87 3.997 Incl. 7 8 1 0.87 2.365 1 0.87 2.997 Incl. 7 8 1 0.87 2.365 1 0.87 2.365 Incl. 7 8 1 0.87 2.365 Incl. 45 48 3 2.60 0.566 Incl. 45 46 1 0.87 1.500 Incl. 45 46 1 0.87 1.500 Incl. 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 1 0.87 1.105												
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 Incl. 13 14 1 0.87 2.172 1.105 1.433 0.290 Incl. 13 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BI0371 696,072.663 4,546,635.437 647.38 57.00 285 -60 7 11 4 3.46 1.268 incl. 7 8 1 0.87 3.997 26 28 2 1.73 0.177 36 37 1 0.87 2.365 40 41 1 0.87 2.365 40 41 1 0.87 2.365 incl. 45 48 3 2.60 0.566 incl. 45 46 1 0.87 1.500 54 56 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 incl. 6 7 1 0.87 2.172 12 17 5 4.33 0.290 incl. 12 17 5 4.33 0.291 1.052 <td></td>												
BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.177 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 6 7 1 0.87 2.172 1.13 1.13 1.105 1.105 Incl. 13 14 1 0.87 1.603 1.603 1.603 1.603 1.603 1.603 Incl. 29 30 1 0.87 1.623 1.623 1.623 1.623 1.623 1.623	BI0371	696 072 663	4 546 635 437	647 38	57.00	285	-60					
B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.177 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 Incl. 12 17 1 0.87 1.134 Incl. 13 14 1 0.87 1.105 Incl. 23 24 1 0.87 1.603 Incl. 29 30 1 0.87 1.623	0.0371	050,072.005	4,540,055.457	047.50	57.00	205						
B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 0.134 B10372 696,054.938 4,546,656.541 647.32 27.71 0.362 1.105 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>inci.</td><td></td><td></td><td></td><td></td><td></td></t<>							inci.					
B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 6 7 1 0.87 2.172 1.134 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.105 2.172 1.1												
B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 B10372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 6 7 1 0.87 2.172 Incl. 6 7 1 0.87 2.172 Incl. 13 14 1 0.87 2.172 Incl. 13 14 1 0.87 1.105 Incl. 13 14 1 0.87 1.105 Incl. 23 24 1 0.87 1.603 Incl. 29 30 1 0.87 1.623												
BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 6 7 1 0.87 2.172 Incl. 12 17 5 4.33 0.290 Incl. 13 14 1 0.87 1.105 Incl. 13 14 1 0.87 1.105 Incl. 22 54 32 27.71 0.362 Incl. 23 24 1 0.87 1.603 Incl. 29 30 1 0.87 1.623												
56 2 1.73 0.134 BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 Incl. 6 7 1 0.87 2.172 12 17 5 4.33 0.290 Incl. 13 14 1 0.87 1.105 22 54 32 27.71 0.362 Incl. 23 24 1 0.87 1.633 Incl. 29 30 1 0.87 1.623							in al					
BI0372 696,054.938 4,546,656.541 647.32 57.00 285 -60 6 8 2 1.73 1.134 incl. 6 7 1 0.87 2.172 12 17 5 4.33 0.290 incl. 13 14 1 0.87 1.105 22 54 32 27.71 0.362 incl. 23 24 1 0.87 1.603 incl. 29 30 1 0.87 1.623							Inci.					
incl. 6 7 1 0.87 2.172 12 17 5 4.33 0.290 incl. 13 14 1 0.87 1.105 22 54 32 27.71 0.362 incl. 23 24 1 0.87 1.603 incl. 29 30 1 0.87 1.623		COC 054 000	4 5 4 5 6 5 5 5 5 5	647.00	57.00	205						
12 17 5 4.33 0.290 incl. 13 14 1 0.87 1.105 22 54 32 27.71 0.362 incl. 23 24 1 0.87 1.603 incl. 29 30 1 0.87 1.623	BI0372	696,054.938	4,546,656.541	647.32	57.00	285						
incl. 13 14 1 0.87 1.105 22 54 32 27.71 0.362 incl. 23 24 1 0.87 1.603 incl. 29 30 1 0.87 1.623							incl.					
22543227.710.362incl.232410.871.603incl.293010.871.623												
incl. 23 24 1 0.87 1.603 incl. 29 30 1 0.87 1.623							incl.					
incl. 29 30 1 0.87 1.623												
incl. 49 50 1 0.87 2.676							incl.	29	30		0.87	1.623
							incl.	49	50	1	0.87	2.676

· · · · · · · · · · · · · · · · · · ·											
BI0373	696,064.075	4,546,654.071	647.37	57.00	285	-60	4	5	1	0.87	1.448
							7	8	1	0.87	0.068
							18	20	2	1.73	3.272
							27	28	1	0.87	0.183
							31	38	7	6.06	0.397
						incl.	32	33	1	0.87	1.087
							39	57	18	15.59	1.366
						incl.	39	42	3	2.60	7.164
BI0374	696,073.843	4,546,651.326	647.98	57.00	285	-60	0	1	1	0.87	0.067
							3	5	2	1.73	0.287
							10	11	1	0.87	1.900
							26	29	3	2.60	0.171
							35	39	4	3.46	0.170
							45	57	12	10.39	0.454
						incl.	52	53	1	0.87	1.887
BI0375	696,101.679	4,547,388.500	723.54	90.00	105	-45	1	6	5	3.54	0.061
							8	9	1	0.71	0.054
							53	54	1	0.71	1.460
							88	89	1	0.71	0.066
BI0376	696,071.987	4,547,349.068	722.36	75.00	105	-45	10	12	2	1.41	0.069
BI0377	696,115.110	4,547,443.675	723.90	120.00	105	-45	0	4	4	2.83	0.056
							47	48	1	0.71	0.129
							52	54	2	1.41	0.795
							59	61	2	1.41	0.289
							84	85	1	0.71	1.072
							90	91	1	0.71	0.093
BI0378	696,133.158	4,547,477.469	721.40	51.00	105	-45	10	12	2	1.41	0.120
							18	23	5	3.54	0.536
						incl.	20	21	1	0.71	2.541
							31	34	3	2.12	0.130
							37	38	1	0.71	0.050

M. Jörg Pohl Sommerweg 22, 88048 Friedrichshafen, Germany Mining Consultant, Independent Resource Geologist

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

JORC Technical Report, Mineral Resource Estimation, Barruecopardo Tungsten Deposit

(Insert name or heading of Report to be publicly released) ('Report')

Saloro S.L.U.

(Insert name of company releasing the Report)

Barruecopardo Tungsten Deposit

(Insert name of the deposit to which the Report refers)

If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.

2nd of November 2023

(Date of Report)

Statement

١,

Jörg Pohl

(Insert full name(s))

am a consultant working for

Independent Mining Consultant

(Insert company name)

and have been engaged by

Agne Ahlenius and Miguel Ángel Menéndez, both full time employees of Saloro S.L.U.

(Insert company name)

to prepare the documentation for

Barruecopardo Tungsten Deposit

(Insert deposit name)

on which the Report is based, for the period ended

2nd of November 2023

(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating Mineral Resources.

Consent

I consent to the release of the Report and this Consent Statement of:

Jörg Pohl, Mining Consultant, Independent Resource Geologist

(Insert reporting company name)

Signature of Competent Person:

European Federation of Geologists (EFG)

Professional Membership: (insert organisation name)

Signature of Witness:

2nd of November 2023

Date:

1738

Membership Number:

Jesús Montero, Salamanca, Spain

Print Witness Name and Residence: (eg town/suburb)

Additional deposits covered by the Report for which the Competent Person signing this form is accepting responsibility:

No additional deposits are covered in this report.

Additional Reports related to the deposit for which the Competent Person signing this form is accepting responsibility:

No additional reports are covered in this report.

6 Bhr

Signature of Competent Person:

European Federation of Geologists (EFG)

Professional Membership: (insert organisation name)

Signature of Witness:

2nd of November 2023

Date:

1738

Membership Number:

Jesús Montero, Salamanca, Spain

Print Witness Name and Residence: (eg town/suburb)