

7 February 2024

SUPPLEMENT INFORMATION TO SALORO MRE (ASX ANNOUNCEMENT 01 FEBRUARY 2024)

EQ Resources Ltd is a global tungsten producer with mining activities in Australia and Spain.

Highlights:

- A new JORC 2012 compliant Mineral Resource Estimate ("MRE") has been compiled, updating Saloro's historical resource statement.
- 4.74M mtu* will be added to EQR's resource inventory with the addition of the Saloro mining operation.
- 78% of the Saloro MRE is in Indicated and Measured Category, giving great confidence to the longevity of the project.
- Both Saloro and Mt Carbine currently have 10-year mine plans.
- Updated geological modelling including nine (9) recent drill holes has highlighted excellent Exploration Potential at Saloro with a significant resource increase likely to occur with infill drilling.
- Overall, EQR's Indicated and Measured In-Situ Resources increase by 69%.
- An Ore Reserve Statement is currently being compiled, supporting the update of the Saloro financial model, due by the end of the quarter.
- For detailed information, please refer to the Full MRE Report on EQR Website (www.eqresources.com.au/site/invest-in-us/technical-reports).

Orebody	Resource Classification	Tonnes (Mt)	Grade (% WO₃)	WO₃ (mtu)
	Measured	10.05	0.191	1,920,400
In-Situ	Indicated	10.46	0.174	1,820,000
	Inferred	3.86	0.259	999,300
	Total	24.37	0.195	4,739,700

- Resource has been calculated using Normal Krigging Modelling
- Variogram used a search engine of 75m strike x 75m depth x 10m width with a 85⁰ dip to the south west.
- No upper cut was used across the database.
- A lower cut of 0.05% was determined as being a sensible lower cut based on economics
- Assays were composited by weighted averages on 5m intervals to group together the narrow high grade zones into more consistent lenses for modelling.

Table 1 - Barruecopardo Mineral Resource Estimate as of 9th of November 2023. All values are rounded to reflect confidence levels in the estimate.

* *Mtu* = 10kg WO₃

EQ Resources Limited ("EQR" or "the Company") is pleased to provide supplementary information to the Saloro Resource Report based on the announcement '<u>Saloro Adds 69% Of Measured And Indicated</u> <u>Resources To EQR's In-Situ Resource Inventory</u>' dated February 1, 2024 with reference to new updates as required under Listing Rule 5.8.1.

EQR's Chief Executive Officer, Mr Kevin MacNeill, commented: "At the request of our stakeholders, we are pleased to provide supplement information to give a more complete summary of the JORC report that was published on the company's website."

The Company announced an updated JORC 2012 compliant MRE for the Barruecopardo mine operated by Saloro S.L.U. in Spain. A total of 4.74M mtu will be added to EQR's resource inventory with the addition of the Saloro mining operation. 78% of the Saloro MRE is in Indicated and Measured Category, giving great confidence to the longevity of the project. An Ore Reserve Statement is currently being compiled, supporting the update of the Saloro financial model, due by the end of the quarter.

As a result, EQR's Indicated and Measured In-Situ Resources increase by 69%.

Geology

The deposit sits within a differentiated granite complex that has been part of the Iberian Orogeny occurring during the Devonian age. The basement rocks of lower Ordovician Age are schists and greywackes and are represented in green in the geological map below. The pinks to orange reflect the phases of intrusive.

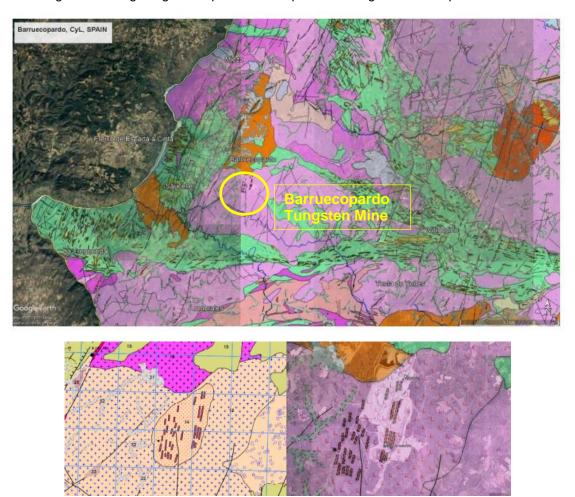


Fig. 1 - Regional Geological Map & detailed mine geology maps. Veins shown as strokes in red.

The mineralisation at site is represented by two main Tungsten minerals with 85%-90% represented as Scheelite (CaWO4) which is fluorescent under UV light and 10-15% as Wolframite ((Fe, Mn) WO4). Other abundant minerals are Quartz, muscovite, pyrite, chalcopyrite and arsenopyrite.

Structure has been incorporated into the modelling with several competent hornfelse structural blocks are seen within a dominantly granitic host rock. Alterations assemblages from sericitic to potassic are observed with enrichment of the ore occurring in the structurally controlled sericitic zones where secondary remobilised scheelite is also observed. The mineralised veins are oriented along strike with a main orientation of NNE 10-15° and usually range between 1mm and 10 cm of thickness.

The following table shows the drilling completed at Barruecopardo with a total of 143 Diamond holes and 378 Recirculation Drilling (RC) holes. Total drilling at the site is 45,443m in 521 holes.

hole type	no. of holes	metres drilled	av. depth	no. of samples	areas drilled	year drilled
DDH	57	11,033.05	194	6,066	all	2006-2007-2008
DDH	33	7,716.80	234	1,353	all	2010-2011-2012- 2015
RC	378	17,456.00	46	11,662	1-2-3-4-5	2018-2019-2020
DDH	27	451.25	17	468	1	2019-2020
DDH	13	4,013.90	309	1,578	6	2021-2022
DDH	13	4,772.40	367	1,510	6 and 7	2022-2023
Total general	521	45,443.40	276*	23,637		

Table 2 - Drill hole statistics

Detailed logging procedures are in place with Rock Quality Designation (RQD) and recoveries being logged first, followed by the identification of Scheelite with the help of a handheld UV lamp and finally geological and structural logging.

For the geology log the following features are recorded: lithology, alterations, mineralisation, structures and paying special attention for the presence of quartz veins. For those position, relative angle in respect to the drill core axis, and their thickness is recorded. In addition, observations of sulphides are annotated.

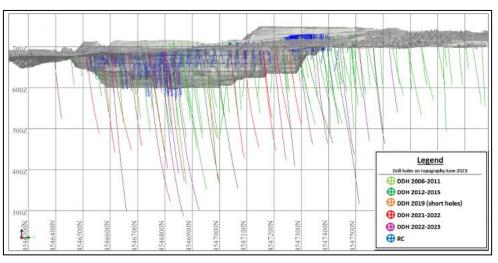
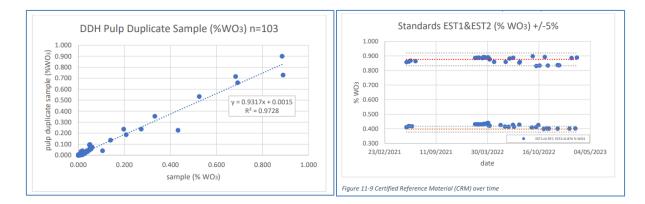



Fig. 2 - Long section of the deposit (North on left) showing topography, the pit and drill holes.

QAQC of subsampling stages QAQC samples have been added to the sample chain at a frequency of approximately 15%. Those include blanks, standards, and duplicates. See results plotted in below figure.

Resources

The MRE has been recalculated from first principles using the latest geological interpretation and best practices as defined under the JORC 2012 Code. The MRE has been estimated by Independent Contractor Jorg Pohl (A Competent Person under the 2012 JORC code). The Saloro deposit (veins) was historically mined in a small open cut and underground by artisans in the 1900's followed in 1970's by a larger 8Mt pit open cut operation operated by Coto Minero Merladet. The current mining phase began in 2019 complemented by the installation of a new 2,500tpd processing plant. The recalculated MRE is as follows:

Orebody	Resource Classification	Tonnes (Mt)	Grade (% WO₃)	WO₃ (mtu)
	Measured	10.05	0.191	1,920,400
In-Situ	Indicated	10.46	0.174	1,820,000
	Inferred	3.86	0.259	999,300
	Total	24.37	0.195	4,739,700
Resource has been calculated using Normal Krigging Modelling				

• Variogram used a search engine of 75m strike x 75m depth x 10m width with a 85⁰ dip to the south west.

No upper cut was used across the database.

A lower cut of 0.05% was determined as being a sensible lower cut based on economics

• Assays were composited by weighted averages on 5m intervals to group together the narrow high grade zones into more consistent lenses for modelling.

Table 1 - Barruecopardo Mineral Resource Estimate as of 9th of November 2023. All values are rounded to reflect confidence levels in the estimate.

Methodology

The Barruecopardo MRE was based upon geological interpretation using drill section gelogical logs and detailed surface mapping to define 9 geological mineralized domains. The domains form hard boundaries to the ore resource shapes. Modelling of the grade and distribution of the resources within the domains was completed using Ordinary Kriging Methodology on block sizes of 6x6x5m (x-y-z), All drill hole assay data from Reverse Circulation and Diamond drilling was used.

A lower grade of 0.05% WO₃ was used, and no upper cuts as composited grade values showed good continuity. The new model is a rotated block model with orientation 15° NNE to align with the strike of the mineralised formation. Block size is 6x6x5m with a maximum sub blocking size allowed to 1.5x1.5x5m. Nine individual wireframes have been interpreted from the geological and the geochemical dataset with a predominant strike direction of 15° (domains 1, 2, 3, 4, 6) and 10° (domains 7, 8, 9). The

estimation takes place within those 9 wireframes using the latest available topography dated, June 2023. A common density value of 2.62 SG has been assigned to the entire rock mass below surface.

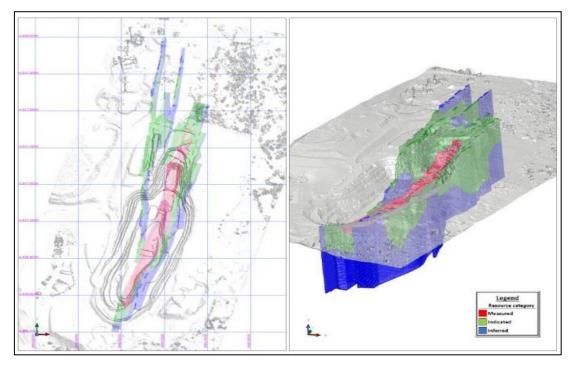


Fig. 4 - Plans and Isometrics showing the resource categories of the deposit and their location.

Variogram statistics reflect that the veins are continuous along strike for over 1.2km, have drilled extents over 300m vertical down to 420m RL from a surface of 750m and the individual ore zones are less than 20m widths. The veins continue through to surface outcrop and have been mapped and sampled in detail.

A strike direction of 10° NNE is applied for veinlets at the north-western part of the main structure. For all structures a steep dip of +/-85° towards the ESE (+/-105°) has been observed.

The classification of the current MRE was assigned according to a certain level of confidence into the data and geological knowledge, which depended on drill hole spacing, interpolation parameters used per pass and several QAQC kriging attributes, calculated during the ordinary kriging process. To gauge where the tungsten lies, the following swath plots highlight the distribution.

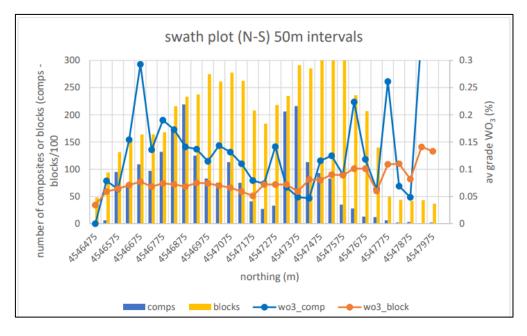


Fig. 5 - The Swath Plots show the distribution of tungsten along strike, being 1,200m in length.

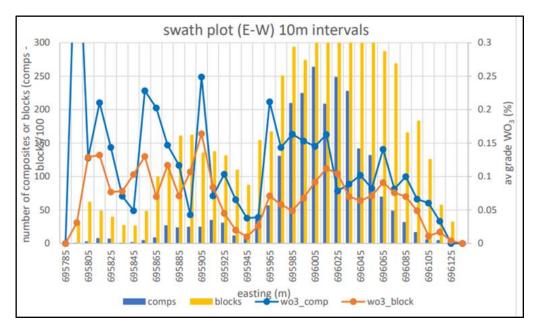


Fig. 6 - The Swath plot for width distribution shows the deposit occurs over 140m widths.

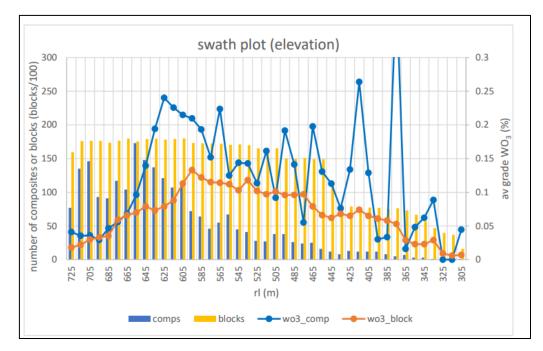


Fig. 7 - Elevation Distribution swath shows how the tungsten occurs from surface (725m RL) down to 505m RL which is a vertical distance of 220m. There does appear to also be narrow high-grade intervals below.

Mining Methods

The Barruecopardo mine has been mined by conventional open cut mining methods since 2019. The open cut follows a Geotech engineered 59-degree pit wall slope, which has proven to be stable. The prime mining fleet over the past 4 years has been 2 x Hitachi 1200 excavators and 10 x Caterpillar 75t trucks plus auxiliary equipment. The Competent Person was aware of all mine costs when considering the resource calculations and feels the resource has the potential to be mined under current circumstances. Reserves are being optimized by Mine Sense Consultants Group using a more complete set of parameters in its optimisation of Mine Reserves, for example tungsten price, tungsten recoveries, stripping ratio, etc... The reserves are planned to be released this quarter.

Discussion

The tungsten system remains open in strike and depth extents with 9 holes drilled in 2022 that indicate this continuation. The Exploration Potential of the resource could significantly increase the existing resource size with further infill drilling.

The inclusion of Saloro resources of 4.74M mtu into EQR's resource inventory will represent an increase of 49%. Current mine life at Saloro based on the current internal Pit 6 design is until 2033 with extensions possible giving EQR a clear, planned 10 years of production on both of its tungsten assets.

Given the high proportion of Measured and Indicated Resources (78%), it is expected a significant amount of this resource will go into Ore Reserves.

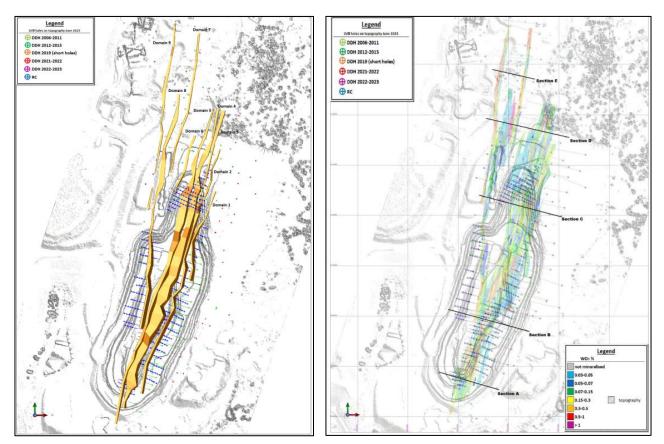


Fig. 8 - Plans showing ore domains on left and grade in domains on right.

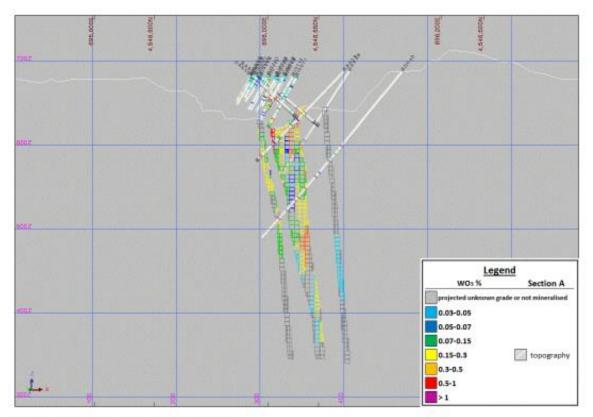


Figure 14-25 Section A (incl. drill hole BD040)

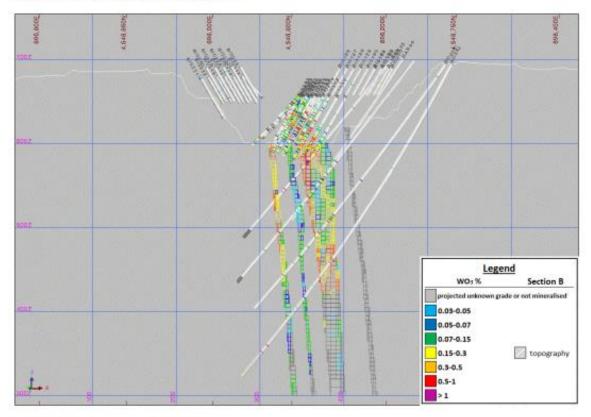


Figure 14-26 Section B (incl. drill hole BD042)

Fig. 9 - Sections A & B across the ore body showing block grades. Section markers are shown in Fig.2.

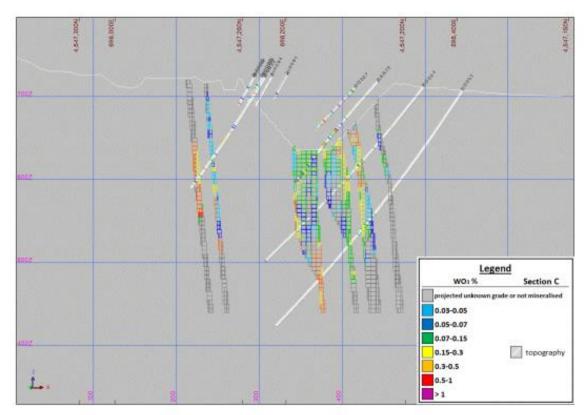


Figure 14-27 Section C (incl. drill hole BD052)

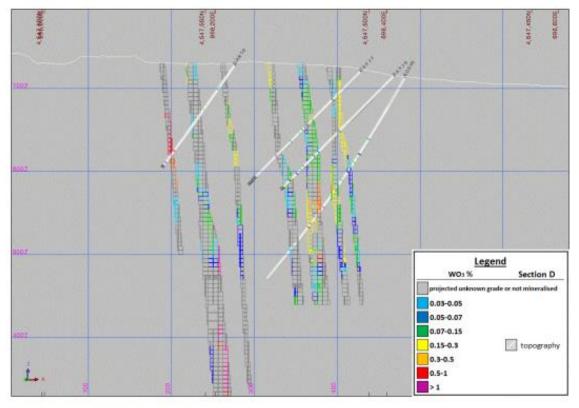


Figure 14-28 Section D (incl. drill hole BD045)

Fig.10 - Sections C & D across the ore body showing block grades. Section markers are shown in Fig.2.

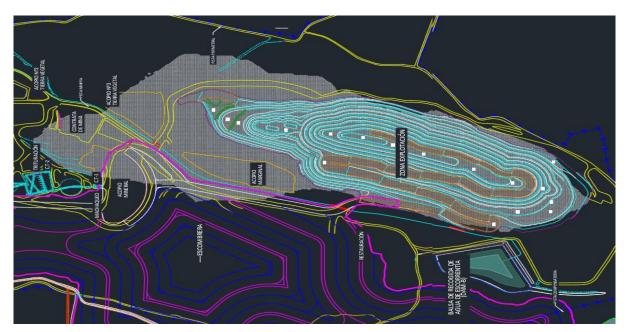


Fig.11 - Current pit design with the 10-year Pit 6 expansion shown in grey.

Fig.12 - View of Barruecopardo Open Pit looking west. Shows Pit 4 in pit floor and Pit 5 cut down.

For detailed information, please refer to the Full MRE Report on EQR Website (<u>www.eqresources.com.au/site/invest-in-us/technical-reports</u>).

Released on authority of the Board by:

Kevin MacNeill Chief Executive Officer **Further Enquiries:**

Peter Tavlor **Investor Relations** 0412 036 231 peter@nwrcommunications.com.au

About the Company

EQ Resources Limited is a leading tungsten mining company dedicated to sustainable mining and processing practices. The Company is listed on the Australian Securities Exchange, with a focus on expanding its world-class tungsten assets at Mt Carbine in North Queensland (Australia) and at Barruecopardo in the Salamanca Province (Spain). The Company leverages advanced minerals processing technology and unexploited resources across multiple jurisdictions, with the aim of being a globally leading supplier of the critical mineral, tungsten. While the Company also holds gold exploration licences in New South Wales (Australia), it aims to create shareholder value through the exploration and development of its current project portfolio whilst continuing to evaluate corporate and exploration opportunities within the new economy and critical minerals sector globally.

Competent Person's Statements

EQ Resources' Exploration and Resource work is being managed by Mr Tony Bainbridge, AusIMM. Mr Bainbridge is engaged as a contractor by the Company and is not "independent" within the meaning of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr Bainbridge has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in JORC Code 2012.

The technical information contained in this announcement relating to resource estimation has been reviewed by Mr Bainbridge and fairly represents the information known. Mr Bainbridge has verified and approved the data disclosed in this release, including the sampling, analytical and test data underlying the information.

The Mineral Resource Estimate linked in this document and available on the Company website has been prepared Mr Jorg Pohl (EurGeol. #1728 and MAusIMM) and reviewed by Mr. Bainbridge who has consented to the inclusion in this release of the matters based on his compiled information in the form and context in which it appears in this announcement. Mr Jorg Pohl has a long association with tungsten in Spain, working for over 10 years with the Iberian Granite Belt on various tungsten, tin, gold deposits and has had more than 4 years being involved with Barruecopardo Deposit directly.

Forward-looking Statements

This announcement may contain forward-looking statements. Forward-looking statements address future events and conditions and therefore involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. Particular risks applicable to this announcement include risks associated with planned production, including the ability of the Company to achieve its targeted production outline due to regulatory, technical or economic factors. In addition, there are risks associated with estimates of resources, and there is no guarantee that a resource will have demonstrated economic viability as necessary to be classified as a reserve. There is no guarantee that additional exploration work will result in significant increases to resource estimates. Neither the Australian Securities Exchange nor its Regulation Services Provider (as that term is defined in policies of the Australian Securities Exchange) accepts responsibility for the adequacy or accuracy of this announcement.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Saloro reverse circulation (RC) drill samples are collected over 1m intervals. Multiple methods were used to determine Tungsten mineralisation (WO ₃) intervals including visual analysis for quartz, originating from veins and UV fluorescense light analysis. Intervals identified to possibly contain tungsten mineralisation were selected and submitted for internal laboratory assay analysis.
		Saloro diamond drill (DD) core was sampled using 0.05-3.6m intervals in the mineralised zones, including areas of suspected internal low grade or waste. Since 2021 interceptions are between 0.5m and 1.4m, aiming for 1m intervals in addition to the mineralized interval, the sampling is extended 1 or 2m in the hanging and the foot wall of the interpreted mineralised zone. Half core was used for sampling, unless a duplicate sample was taken. In this case quarter core was used.
		Saloro blast hole sampling results have not been used for this resource estimation.
		No historic drill core or historic assay analysis prior to 2006 was used for this resource estimation.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Standards and blanks are inserted into the sample stream to assess the accuracy, precision and methodology of the internal laboratory used. In addition, field duplicate samples are inserted to assess the variability of the WO ₃ mineralisation. Approximately 10-15% of all samples relate to quality control. In addition, the internal laboratory undertakes their own duplicate sampling as part of their internal QA/QC processes. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.
		Drill hole collar locations are surveyed by a qualified internal Saloro surveyor using standard differential GPS (GNSS) equipment TYPE Leica GS14 and tablet CS15, achieving sub decimeter accuracy in horizontal and vertical position. Down-hole surveys are only undertaken since September 2019. 27 DD holes (BD027 to BD053) using a Gyro (type Reflex). Measurements are taken every 5m down hole. Gyro measurements are not affected by magnetism, in addition no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m	RC drill samples are collected over 1m intervals and split on site, using a three-tier riffle splitter to provide an approximate 3-5kg sample. In rare cases, wet samples are split using a cone and quarter method.
	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Samples are further split in the core shed using a small riffle splitter such that approximately 800g samples are generated and sent to the internal preparation laboratory. Here, samples are dried, fine crushed down to below 3mm, and pulverised with at least 85% of the sample passing 75µm. 30-50g of sample is separated to make a 10g pressed powder pellet for X-ray fluorescence (pppXRF).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so,	Saloro drilling comprised both DD, using HQ size with occasional PQ size in the top hole and RC drilling using a 140mm diameter face sampling hammer.
	by what method, etc).	For angled DD no oriented core was achieved. A selected number of short DD holes (BD001-BD027) were logged using an acoustic Televiewer for structural analysis.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Saloro DD typically recorded overall core recoveries in excess of 90%, which is considered acceptable.

Criteria	JORC Code explanation	Commentary
		Saloro RC drill samples are collected over 1m intervals through a cyclone. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Individual sample bags are not weighed to assess sample recovery, but a visual inspection is made by the Company geologist to ensure all samples are of approximately equivalent size. All inspections for recovery are considered as appropriate.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The DD drill rigs used face discharge bits to ensure a low contact between the rock and drilling fluids, minimising ore washing.
		Core was cut using a water saw with care taken to ensure minimal ore loss.
		The RC drilling rigs used suitably sized compressors to ensure dry samples where possible. Plastic sample bags are strapped to the cyclone to maximise sample recovery. Sample logs record whether the sample is dry, moist or wet.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	To avoid any core flushing, the use of water in core recovery for DD is controlled.
	preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.
		The RC sample recoveries are of an acceptable level and no bias is expected from any sample losses.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Saloro logging of DD core included recording descriptions of lithology intervals, which were then coded into the database.
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Saloro geotechnical logging of DD core included recording descriptions of integrity (recovery and RQD), materials (lithology, and alteration).
		Saloro structural logging of DD core included recording descriptions of structure type, structural angles, fracture intensity and infill type.
		Saloro geological logging of RC chip samples included recording descriptions of lithology, weathering, alteration, and mineralisation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging is qualitative in nature.
		Saloro DD core boxes were photographed both dry and wet and photos are stored on the local server.
	The total length and percentage of the relevant intersections logged.	All DD and RC drill holes are logged in full by the company geologists and written into a digital database in Excel format.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Saloro DD core was sampled using 0.05-3.6m intervals in the mineralised zones, including areas of internal low grade or waste.
		Average length of 96% of the samples is between 0.8-1m. In addition the sampling was extended by 1 or 2m up and down hole from the interpreted mineralised zone.
		Half or quarter core was used for sampling. The remaining core is stored back in the respective core box.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Saloro RC drill samples were collected at 1m intervals. RC intervals were sampled by splitting dry samples in the field to 3-5kg using a three-tier riffle splitter. This sample was taken to the core shed geologically logged and further split to 0.8-1kg using small riffle splitter. Where samples were wet, they were dried prior to spitting.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Saloro analytical samples are systematically prepared and analyzed in Saloro's internal on-site laboratory. Samples were dried, fine crushed down to 70% below 3mm and pulverised with at least 85% o the sample passing 75µm. 10g of sample was used for analysis by pressed powder pellet XRF method. The XRF ppp method is considered appropriate for this style of Tungsten mineralisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Previous field tests have determined that the sample size and method of sampling produce representative RC samples. QA/QC procedures involve the use of standards, duplicates and blanks which are inserted into sample batches at a frequency of approximately 15-20%.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate splits of RC samples are taken every 10m down hole within the sampled intervals. The results from these duplicates generally show acceptable repeatability. In some cases, indications of inhomogeneity were observed in a number of duplicates, mainly concerned are samples with grades below 0.05% WO ₃ . 5% of the sample pulps are sent to an Umpire lab (ALS Loughrea). Results show good repeatability.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The Tungsten mineralization occurs within quartz veins as coarse scheelite and to a minor content as wolframite minerals. Previous test work carried out by Saloro using different sample sizes has demonstrated that the selected sample size is appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Saloro assayed samples for Tungsten using the XRF Fluorescence Spectrography method with pressed powder pellets. This analytical method reports total tungsten content.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical surface or downhole tools are used to achieve analytical grades.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Standards (CRM certified reference material), blanks and duplicates were regularly inserted into the sample stream by Saloro, with approximately 15-20% of all samples related to quality control. The internal laboratory also used their own process of QA/QC inserting standards, pulp repeats, sample duplicates and blanks.
		Review of the Saloro quality control samples, as well as the internal laboratory quality QA/QC reports, has shown no sample preparation issues, acceptable levels of accuracy and precision and no bias in the analytical datasets.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Reported significant intersections have been checked and verified by Senior Geological management. In addition, selected significant intersections have been checked by the Independent CP.
	The use of twinned holes.	Two twin holes have been drilled in the early stage of the development of the deposit, BAR0046bis and BAR056bis. Correlation between both is however challenging, as separation between holes is >7m at first mineralized intercepts. Probably as well due to the high nugget effect seen for the entire deposit and as well on DD hole duplicates.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All primary data was recorded in templates designed by Saloro. Assay data from the internal laboratory is received in digital and downloaded directly into the Excel spreadsheet, managed by the company's chief geologist.
		Data is entered into controlled excel templates for validation.
		Regular backups of all digital data are undertaken. These procedures are documented in an internal report (Core drilling – QAQC, May 2021)
	Discuss any adjustment to assay data.	Tungsten assay data is received from the internal laboratory as WO_3 % and is imported as such into the database. Likewise with the three other analytical elements As, P and S.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Saloro drill hole collar locations were surveyed by their internal surveyors after drilling, using a standard differential GPS (DGPS) equipment achieving sub decimeter accuracy in horizontal and vertical position.
		Saloro down-hole surveys were undertaken by SPIDRILL S.A.U. on selected DD holes using a Reflex Gyro down-hole deviation probe. Measurements were taken every 5m down. Not affected by Gyro measurements, however no strongly magnetic rocks are present within the deposit which may affect magnetic based readings.
	Specification of the grid system used.	The grid system is ETRS 1989 UTM Zone 29N.

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Topographic control is based on a digital terrain model with sub metric accuracy and in the open pit area down to 2.5cm/pixel resolution, generated through an internal drone survey and is verified through detailed drill hole collar surveys by Saloro's qualified surveyor using a DGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The majority of the Saloro drilling was undertaken on a notional 35m to 50m grid, with section lines orientated approximately perpendicular to the interpreted strike of the mineralisation.
		DD drilling was undertaken in various phases, targeting different objectives over time. Initial drill spacing was 50m. Later drilling targeted to infill eventual gaps and investigate the deeper eastern areas of the deposit with an approximate average spacing of 35m. Some deeper areas are poorly informed.
		RC drilling was used for grade control in the shallow areas, drilled and mined between 2019 and 2023. Hole spacing was 10m with a line spacing of 50m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	RC data spacing (10m lines by 50m) is considered sufficient to assume geological and grade continuity, and allow the estimation of Inferred, Indicated and Measured Mineral Resources.
		DD data spacing (35m by 35m) is considered sufficient to assume geological and grade continuity, and allow the estimation of Inferred, Indicated and Measured Mineral Resources.
	Whether sample compositing has been applied.	No compositing of samples in the field has been undertaken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The Saloro Tungsten deposit in Barruecopardo occurs within extentional dilational NNE-SSW aligned subvertical structures in a granite hosted, sheeted vein system. Oriented inclined drilling (RC and DD) aims to cut those structures perpendicularly, with a predominant orientation of 285 (eastern flank) 105 (western flank) and inclinations of -60°. Sampling is considered to be unbiased.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling (DD and RC) is oriented and inclined. Due to the interpreted subvertical mineralized and well oriented veins (NNE-SSW), no sampling bias is considered to have been introduced by the orientation of the drilling.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by Saloro. Samples were transported from the drill site by company vehicles to a sample preparation shed where samples are prepared for dispatch. Prepared samples are taken directly from the sample preparation shed to the internal laboratory (same core shed). Sample submission forms are sent in paper form with the samples as well as electronically to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures, as well as QA/QC data, are reviewed internally on an ongoing basis. Jörg Pohl (CP, Geology Consultant, Independent Resource Geologist) has independently reviewed the sampling techniques, procedures, and data. He has undertaken various site visits since 2019 to review and inspect the application of procedures. These reviews have concluded that the sampling and analytical results have resulted in data suitable for incorporation into Mineral Resource estimation.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Barruecopardo Tungsten Prospect lies within the Mining Concession (concesión de explotación) C.E. BARRUECOPARDO № 6.432-10 which is 100% owned by Saloro SLU. The Barruecopardo mining Concession has been granted in 2014 by the Spanish mines department for a 30-year period and is renewable two times for the same period until the year 2104.

Criteria	JORC Code explanation	Commentary
		The Barruecopardo mining concession lies within a special protection are for birds forming part of the EU Nature Network 2000. The mining and processing area is located adjacent to the village of Barruecopardo.
		The current environmental impact authorisation is based on the "Declaracion de Impacto Ambimental (DIA), published in the local governmental announcement "Boletín Oficial de Castilla y León" (BOCYL nº 25, dating 6 of February 2014), ORDEN FYM/45/2014.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure in the form of a Mining Concession has been granted in 2014 and is considered secure. The mine has been reopened in 2019 and is operating since that time. There are no known impediments to operations.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Although other parties have been developing the mine previously, the entire dataset, all work referred to and used for this study has been realized and provided by Saloro SLU.
Geology	Deposit type, geological setting and style of mineralisation.	Geologically, the Barruecopardo mine is situated within the Central Iberian Zone and characterized by paleozoic metasediments of the Shist-Grauwacke Complex (CEG), and large units of granitic varican rocks intruded into those metasediments.
		In the Barruecopardo prospect, the mineralization is hosted within sheeted narrow quartz vein swarms, oriented NNE-SSW and steeply dipping at 80-85° towards the ESE. Main Tungsten mineral is Scheelite with a minor content of Wolframite. Tungsten is often associated with sulfides (pyrite, arsenopyrite, chalcopyrite).
		The tectonic activity which is the origin of those shear vein deformation is of variscan age when spaces have been filled during the active period.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Details of all reported drill holes are provided in Appendix B of this report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All information is Material and has been included in Appendix B of this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported drill intersections are based on chemical assay data and are calculated using a 0.05% WO ₃ cut-off. No high grade cut has been applied to the dataset.
		A composite length of 5m has been chosen within the modeled wireframes.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralised intervals are typically very narrow, reflecting the vein-style mineralization of the deposit. All intervals have been tabulated in Appendix C; no aggregation has been made.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drilling was planned in such a way as to intersect expected mineralisation in a perpendicular manner. The tungsten mineralisation has been observed subvertical, consequently all RC and DD holes have been drilled inclined between -36 and -71 degrees. The reported down-hole intervals are recalculated to true widths. The sheeted vein

Criteria	JORC Code explanation	Commentary
intercept lengths		swarms are grouped into 5m composites Intercepts a
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The reported down-hole intervals are recalculated to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams, including a drill plan and cross sections, are included in the main body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported in Appendix C of this report.
Other substantive exploration	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A downhole geophysics study with CORELOG INGENERIA using an acoustic televiewer, a spectral gamma ray and a dual induction too have been realized in 2019.
data		Multi Element chemical data is used for most of the chemical data with the objective to characterize geochemical patterns, economic elements or eventual deleterious elements.
		Bulk density measurements are unchanged from the previously MRE 2011 (CSA) who derived an average density value of 2.62 from a total of 934 samples originating from 22 holes.
		Geotechnical test work reporting is ongoing on a two-month basis. A geomechanical study has been performed by Golder in 2020, on pit wall stability.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	No immediate further work is planned for the Barruecopardo Prospect. New drilling could target inferred areas to raise those into higher categories and increase geological confidence.
		Mineralisation remains open along strike and at depth, with both areas to be targeted in subsequent drilling campaigns.
		Geological studies will focus on detailed interpretation of structural information, and it's influence on grade distribution.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diagrams and cross sections are shown in the main body of this report.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Drill hole data is stored in a secured and access restricted Excel spreadsheet on the server. Drill data recorded in a spreadsheet is transferred to the database by the project geologist who is responsible for reviewing and validating the data. Assay data is received from the internal laboratory in digital format and is loaded directly into the database.
		Geological logging is restricted to appropriate codes relevant to the local geology, mineralisation and alteration setting. A copy of the master database in MS Access format is linked to Surpac mining software for Mineral Resource Estimation (MRE).

Criteria	JORC Code explanation	Commentary
	Data validation procedures used.	Database validation checks including collar survey position, down hole survey control, assay limits, sample intervals and logging codes are completed prior to the data being transferred to the master database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Sampling techniques and procedures, as well as QA/QC data, are reviewed internally on an ongoing basis. Jörg Pohl, (CP, Geology Consultant, Independent Resource Geologist) has reviewed the sampling techniques, procedures, data and resource estimation methodology. He has undertaken a number of site visits, the most recent being in August 2023, to review and inspect the application of these procedures. He concludes that the sampling and analytical results available are appropriate for estimation of the Mineral Resource.
	If no site visits have been undertaken indicate why this is the case.	Site visits have been undertaken.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence of the geological interpretation is appropriate for the current level of resource estimation. The resource is defined within mineralised envelopes which encompass all zones of significant mineralisation.
	Nature of the data used and of any assumptions made.	Geology and mineralisation interpretation is based on geological logging and sample assays derived from RC and DD drilling, along with cross sectional interpretations which include surface mapping information and geophysical studies (acoustic televiewer).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Structural studies show dips of structures to vary between 50° and 85° with a predominant subvertical dip of 80 to 85°. Structural control is understood to be the principal factor of the tungsten mineralisation for the Barruecopardo, sheeted vein style deposit.
	The use of geology in guiding and controlling Mineral Resource estimation.	On the deposit scale the grade is interpreted to be more influenced by structure.
	The factors affecting continuity both of grade and geology.	Geological logging and chemical assay of samples from drill holes has demonstrated the continuity of the grade and mineralised structures between sections. Breaks in continuity are minor. If observed, they are likely due to structural offsets, some of which have been observed or interpreted from surface mapping.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Barruecopardo mineralisation covers an area of approximately 1.6km by 0.1-0.3km and is still open to both sides (NE and SW) and towards depth, showing mineralisation beyond 400m below surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	A mineralised envelope at Barruecopardo is created encompassing all zones of significant mineralisation. A number of nine different domains have been interpreted using geological information and chemical grades. Assay WO_3 data has been composited to 5m intervals with a minimum grade of 0.05% WO_3 , allowing for internal waste.
	computer sonware and parameters used.	Geostatistical variogram modelling was used to determine appropriate parameters for estimation of tungsten grade, using Ordinary Kriging (OK) for all domains in order to simulate the grade tonnage distribution based on a Selective Mining Unit (SMU) of 6m x 6m x 5m (x-y-z).
		Surpac software was used for mineralisation volume interpretation and tungsten grade estimation.
		Chemical assay data is from DD and RC sampling. For all other intervals that have been considered barren, a background grade of 0.002% WO ₃ has been used. For the deleterious elements As, P and S, respective background values of 0.005%, 0.004% and 0.005% have been applied.
		The drill hole spacing is approximately 40m in the eastern part of the deposit and down to 460m of depth and in the northwestern part down to an RL of 590m.

Criteria	JORC Code explanation	Commentary				
		No drilling took place below an RL of the main pit.	of 650m, in the s	outhwestern part		
		Nine mineralisation domains were id	lentified (D1, to	D9).		
		5m sample composites were used to estimate grade into 6m by by 5m (x/y/z) parent blocks using OK. Sub blocking is allowed f and y directions to 1.5m x 1.5m. No sub blocking in vertical directi				
		No Top cut was applied. To reduce grade samples, large composites of of internal of internal waste, given of WO ₃ . The 5m composites are co- minable intervals, in contrast to the Appropriate search volumes, min	5m were used, composite grade onsidered to re very thin minera nimum and m	allowing up to 4m es exceed 0.05% flect operational lised veins. aximum sample		
		numbers and block sizes were used Neighbourhood Analysis. The vario used. All other relevant estimation table below:	gram nugget v	alue of 47% was		
		Barruecopardo ordinary kriging estimat	tion parameters Novem	ber 2023		
		Parameters (1st/2nd/3rd pass)	Domains 1-6	Domains 7-8-9		
		Minimum composite samples to estimate one block	4/3/2	4/3/2		
		Maximum composite samples to estimate one block	6/5/4	6/5/4		
		Search ellipse Major Range (m)	50/100/160	50/100/160		
		Search ellipse Semimajor Range (m)	42/83/133	42/83/133		
		Search ellipse Minor Range (m)	6.3/6.3/6.7	6.3/6.3/6.7 2		
		Max composite samples per hole Max vertical distance to sample	2 25/35/45	25/35/45		
			15	10		
		Search ellipse bearing Major (degrees) Search ellipse plunge (degrees) towards SSW	5	5		
		Search ellipse dip (degrees)	-85	-85		
		Discretisation points	4/4/4	4/4/4		
		In-situ dry bulk densities were assig common value of 2.62 g/cm ³ was us				
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The current resource estimate wa internal resource estimate (CSA 20 were based on earlier drill campa (2012, 2019, 2021 and 2022). All of taking ongoing mining operations an into account.	012 and Jorg F aigns and reso which support th	Pohl 2022) which urce estimations ne current results,		
	The assumptions made regarding recovery of by-products.	The resource model estimates Tung and the following elements, conside P, S. (single pass ID ² estimation)				
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Deleterious elements are Uran Phosphorus. None of them is significance.				
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	The tungsten grade is estimated int blocks using an Ordinary Kriging thr compares to the average drill spacin An SMU size was chosen to mate mining methodology with 5m bench	ee pass estimating of 35–50m in the feasibility	ion process. This x and y direction. / study open cut		
	Any assumptions behind modelling of selective mining units.	SMU dimensions have been chosen backhoe excavators and dump truck		election of haul		
	Any assumptions about correlation between variables.	Tungsten is the only economic m resource model.	etal estimated	in the current		
	Description of how the geological interpretation was used to control the resource estimates.	Structural orientations and chemica the volume of the resource estimate of the mineralisation volume and as continuity above a 0.04% WO ₃ grad	e by restricting sociated sample	the interpretation		
		The domains are based on geology with defined zones of mineralisation across strike.				

Criteria	JORC Code explanation	Commentary
	Discussion of basis for using or not using grade cutting or capping.	Tungsten grade distribution exhibits a strong nuggety effect. It was decided to use single high grades as such and not to apply any top cut. Nevertheless, to compensate for those outliers and an eventual bias, it was decided to composite individual samples to 5m composites for the estimation process, allowing up to 4m of internal low-grade material if the weighted composite grade does not fall below the lower limitation of 0.05% WO ₃ . This permits to model and integrate continuous narrow veins into the estimation, conserving uncut grades.
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Validation of the MRE included visual inspection of the grade distribution compared to the drill data, comparison of block model statistics to the sample statistics and the generation of swath plots. This validation process confirmed that the MRE appropriately represents the grade and tonnage distribution of the tungsten mineralisation at the confidence levels reported.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The resource tonnage is reported on a dry bulk density basis. In-situ specific gravity measurements were completed on dry DD core using the "Archimedes" principle. Sample grades are reported using dry weight. No moisture content of DD core has been determined.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The MRE has been reported using a 0.05% WO ₃ cut-off grade. Based on the current tungsten market, reporting of the MRE at a 0.05% cut- off grade is both justifiable and consistent with previous published MRE's for this style of mineralisation.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The DFS and ongoing mining activity since 2019 demonstrated that the Barruecopardo resource can economically be extracted using open pit mining methods. Indicative parameters used for pit optimisation purposes in recent studies are (communicated from the Saloro mine manager): Tungsten selling price: 279.45-364.5 \$/MTU Total Mining Cost: 1.62 \$/t Mining recovery: 96% Mining dilution: 7% Plant Process Cost (incl. G&A cost): 11.64 \$/t Recovery WO ₃ : 64% Slope angle: 45-59° Selling costs: 4.04 (\$/MTU) Exchange rate (\$/€): 1.12 Discount rate: 8%
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work on representative samples across a range of ore types has been undertaken for the Barruecopardo deposit. The results of this test work showed the mineralisation to be amenable to gravimetric separation, with tungsten recoveries set out in the original DFS completed by Saloro at over 75% recovery of WO ₃ but results in the order of 47% recovery of WO ₃ (written communication Saloro) in the past year. Recent test work investigated increasing recovery from the fines which are currently considered as reject and sent to tailings as an opportunity to increase recovery. This work was undertaken by Wardell Armstrong Int and employs the use of Falcon Concentrators for the recovery of the ultra-fine fraction. These Falcon Concentrators have been purchased and are set for installation in 2024. In addition to this, an Australian independent metallurgical consultancy "In Search of Excellence" led by Kevin Harney, has been engaged for the overall processing circuit and has developed a
		structured program to increase recoveries from their current levels through a structured road map to achieve a 64% recovery in the near term and a 75% recovery as per the original DFS model on an ongoing basis in the long-term. Lastly, in addition to the original BFS, a recent process upgrade has
C		been installed at the Barruecopardo processing plant, being two TOMRA XRT Sorters. These high-tech machines have had a

		positive impact overall, seeing a +90% recovery on feed to the XRT Sorter. This reduces overall mass early on in the process, concentrates tungsten bearing ore after initial crushing, and lowers overall processing costs. The XRT Sorters help to reduce mass going to the quaternary crusher circuit at the Barruecopardo process plant and reduce ultra-fines generation overall, which is one of the current recovery loss drivers.
		Ultimately, the recovery losses appear to be mainly process related and confidence is high that they will rectified under the metallurgical program set out by the metallurgical consultants and use of the Falcon Concentrators as recommended by Wardel Armstrong. Overall, these process improvements, all lead toward a reasonable and economic recovery assumption of 64%.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential	Waste and process residue disposal as per environmental impact study (DIA) dating 6 th of February 2014 and published in BOCYL nº25) to the respective tailings and waste dumps.
	environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of	On 6th of March 2021 Saloro S.L.U. applied for authorisation to modify the current tailings dump. Authorisation has been given on 15th of November 2021.
	early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	A newly modification is planned (2023), concerning a volumetric change of the tailings damp. Authorisation has not been given yet, Saloro S.L.U. however considers all necessary authorisations in respect to this project, to be achievable.
		No further potential environmental impacts of the mining and processing operation are known.

Criteria	JORC Code explanation	Commentary		
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature,	In-situ dry bulk density values were derived from DD core samples, using the Archimedes water immersion method.		
	size and representativeness of the samples.	From 934 individually analysed samples with origin of 22 different DD holes, a single value has been adapted for the entire deposit, which is 2.62 g/ccm.		
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Rocks over the entire deposit are fresh and competent. Rock is competent enough to ensure the method used, takes into account any rock porosity.		
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	One common density measurement has been classified by geological logging.		
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The reported MRE has been classified as Measured, Indicated and Inferred after consideration of the following:		
		Adequate geological evidence and drill hole sampling is available to assume geological and grade continuity.		
		Adequate in-situ dry bulk density data is available to estimate appropriate tonnage factors.		
		Adequate mining, metallurgy, and processing knowledge to imply potential prospect for economic extraction.		
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The reported MRE has been classified with consideration of t quality and reliability of the raw data, the confidence of the geologic interpretation, the number, spacing and orientations of intercep through the mineralised zones and knowledge of grade continu gained from observations and geostatistical analysis.		
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported MRE and its classification are consistent with the Competent Person (CP) view of the deposit. The CP was responsible for determining the resource classification.		
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Saloro has undertaken a review of the previous MRE and concluded that the estimate was developed using industry standard methods and that the estimate was considered to reflect the understanding of the geology and grade continuity.		
		Jörg Pohl (CP, Geology Consultant, Independent Resource Geologist) reviewed the reported MRE and concluded that the estimate appropriately represents the grade and tonnage distribution of tungsten mineralisation at confidence levels commensurate with the Inferred, Indicated and Measured resource classification.		
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of	The confidence level is reflected in the resource classification category chosen for the reported MRE. The definition of Indicated and Inferred Mineral Resources is appropriate for the level of study and the geological confidence imparted by the drilling grid.		
	statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The reported MRE is considered appropriate and representative of the grade and tonnage at the 0.05% WO ₃ cut-off grade. The application of geostatistical methods has helped to increase the confidence of the model and quantify the relative accuracy of the resource on a global scale. It relies on internal data sourced by recent drilling. The relevant tonnages and grades are variable on a local scale for SMU dimensions of 5m by 5m by 6m (x/y/z).		
		The CP considers that the current drilling grid is sufficient for classification of the Mineral Resource as Measured, Indicated, of Inferred.		
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Barruecopardo deposit is likely to have local variability. The global assessment is an indication of the average tonnages and grade estimate for each geological domain.		

Criteria	JORC Code explanation	Commentary
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The Barruecopardo mine is under production since 2019. Recent reconciliation has shown differences between the current resource model and production numbers. This new model aims for better reconciliation through relevant modifications in modelling and resource estimation, such as newly adjusted wireframes, 5m composites allowing internal waste as, more restricted search volumes and the replacement of missing intervals by background values, accounting for higher internal dilution.

APPENDIX B: SALORO JORC COLLARS

hole_id	x_collar	y_collar	z_collar	max_depth	drill_start_date	drill_end_date	hole_type
BAR01	696200.7	4547289	726.932	161.65	23-Feb-06	29-Mar-06	DDH
BAR02	696313	4547289	722.43	321	5-Apr-06	11-Apr-06	DDH
BAR03	696216.5	4547485	727.22	161.05	9-May-06	22-May-06	DDH
BAR04	696223.7	4547689	731.26	160	22-May-06	29-May-06	DDH
BAR05	696262.6	4547478	730.02	161.85	30-May-06	8-Jun-06	DDH
BAR06	696328.5	4547476	726.16	280.5	12-Jun-06	15-Jul-06	DDH
BAR07	696294.1	4547685	729.91	241.85	18-Jul-06	28-Jul-06	DDH
BAR08	695277.7	4546825	705	139.5	29-Jul-06	16-Aug-06	DDH
BAR09	696218.3	4547433	727.828	150	16-Feb-07	27-Feb-07	DDH
BAR10	696220.7	4547535	727.524	150.8	28-Feb-07	7-Mar-07	DDH
BAR11	696214.4	4547587	728.007	150.3	8-Mar-07	15-Mar-07	DDH
BAR12	696228.3	4547645	730.037	150	16-Mar-07	25-Mar-07	DDH
BAR13	696235.1	4547735	733.323	157.5	26-Mar-07	30-Mar-07	DDH
BAR14	696246.9	4547796	734.357	150.1	30-Mar-07	2-Apr-07	DDH
BAR15	696251.3	4547834	732.192	150.2	2-Apr-07	6-Apr-07	DDH
BAR16	696321.6	4547958	726.103	210.5	7-Apr-07	13-Apr-07	DDH
BAR17	696266.8	4547875	728.802	150.45	23-Jul-07	5-Aug-07	DDH
BAR18	696329.2	4547819	733.043	290.2	7-Aug-07	3-Sep-07	DDH
BAR19	696284.4	4547562	728.605	285.45	31-Aug-07	15-Sep-07	DDH
BAR20	696149	4546682	697.544	213.9	11-Sep-07	19-Sep-07	DDH
BAR21	696220.1	4547389	726.509	172.2	21-Sep-07	27-Sep-07	DDH
BAR22	696215.6	4547336	726.899	181.2	28-Sep-07	5-Oct-07	DDH
BAR23	696173.5	4547234	722.729	160	5-Oct-07	16-Oct-07	DDH
BAR24	696063.7	4547154	713.101	153	17-Oct-07	22-Oct-07	DDH
BAR25	696051.3	4547096	705.897	151.8	23-Oct-07	27-Oct-07	DDH
BAR26	696223.9	4546919	712.164	92	28-Oct-07	8-Nov-07	DDH
BAR27	696333.6	4547365	720.821	304.15	28-Oct-07	16-Nov-07	DDH
BAR26BIS	696252.7	4546885	711.774	295.2	9-Nov-07	21-Nov-07	DDH
BAR28	696257	4547481	728.57	217.3	17-Nov-07	24-Nov-07	DDH
BAR29	696298.5	4547730	730.738	220.5	22-Nov-07	29-Nov-07	DDH
BAR30	696323.9	4547921	727.586	213.4	25-Nov-07	11-Dec-07	DDH
BAR31	696266	4547626	729.435	205.3	29-Nov-07	13-Dec-07	DDH
BAR32	696464.4	4547899	733.411	100.2	13-Dec-07	16-Dec-07	DDH
BAR34	696465.4	4547823	731.252	87	14-Dec-07	18-Dec-07	DDH
BAR33	696067	4547201	711.618	151.1	16-Dec-07	10-Jan-08	DDH
BAR36	696276	4547012	715.235	205.4	14-Jan-08	22-Jan-08	DDH
BAR35	696208.2	4546770	700.787	277.3	10-Jan-08	24-Jan-08	DDH
BAR38	696099.3	4546558	688.277	175.4	25-Jan-08	31-Jan-08	DDH
BAR37	696309.8	4547107	714.776	217.4	23-Jan-08	7-Feb-08	DDH
BAR39	696280.2	4547297	726.76	145.1	1-Feb-08	7-Feb-08	DDH
BAR40	696352.4	4547284	713.685	223.3	8-Feb-08	15-Feb-08	DDH
BAR41	696370.1	4547402	715.535	174.8	8-Feb-08	16-Feb-08	DDH
BAR42	696382	4547354	712.715	199.25	16-Feb-08	22-Feb-08	DDH

DAD42	COC210 4	45 47 417	724 210	100.0	10 Fab 00		
BAR43	696318.4	4547417	724.319	169.6	19-Feb-08	25-Feb-08	DDH
BAR44	696290.8	4547255	722.49	115.3	25-Feb-08	27-Feb-08	DDH
BAR45	696297.9	4547326	725.436	111.3	26-Feb-08	29-Feb-08	DDH
BAR46	696350.1	4546858	692.808	310.3	10-May-08	26-May-08	DDH
BAR46BIS	696352	4546863	693.025	443	27-May-08	21-Jun-08	DDH
BAR47	696232.9	4546831	710.871	270.1	27-Aug-08	6-Sep-08	DDH
BAR48	696232.2	4546831	710.876	219.8	8-Sep-08	16-Sep-08	DDH
BAR48 BAR49	696199.7	4546708	698.05	219.8	16-Sep-08	30-Sep-08	DDH
BAR49 BAR50	696284.9	4546953	702.007	269.8	17-Sep-08	1-Oct-08	DDH
BAR50 BAR51	696052.2	4546451	693.362	109.95	2-Oct-08	7-Oct-08	DDH
BAR51 BAR52	696284.2	4546953	702.029	213.95	2-Oct-08	10-Oct-08	DDH
BAR52 BAR53	696035.1	4546483	686.904	72.45	8-Oct-08	15-Oct-08	DDH
BAR55	696118	4546641	697.771	139.85	16-Oct-08	23-Oct-08	DDH
BAR55	696148	4546734	706.601	177.45	16-Oct-08	24-Oct-08	DDH
BAR55	696144.2	4546628	697.154	83	8-Oct-10	19-Oct-10	DDH
BAR56BIS	696144.8	4546626	697.134	241.9	21-Oct-10	3-Nov-10	DDH
BAR57	695995.6	4546589	682.784	93.2	4-Nov-10	7-Nov-10	DDH
BAR58	696087.7	4546540	688.047	150	8-Nov-10	13-Nov-10	DDH
BAR59	695976.9	4546549	683.046	74.6	16-Nov-10	26-Nov-10	DDH
BAR60	696114.6	4546587	694.574	153.5	28-Nov-10	5-Dec-10	DDH
BAR61	696098.9	4546620	698.254	135.1	6-Dec-10	12-Dec-10	DDH
BAR62	696119.9	4546663	698.324	150.1	13-Dec-10	20-Dec-10	DDH
BAR63	696225.9	4546739	698.898	337.8	3-Jan-11	17-Jan-11	DDH
BAR64	696138.6	4546713	705.428	149	13-Jan-11	19-Jan-11	DDH
BAR66	696226.7	4546790	701.579	235.2	3-Jan-11	20-Jan-11	DDH
BAR65	696243.3	4546861	711.079	223.1	18-Jan-11	24-Jan-11	DDH
BAR67	696290.5	4547033	716.025	229.5	25-Jan-11	1-Feb-11	DDH
BAR68	696292.8	4547059	714.919	198.7	2-Feb-11	9-Feb-11	DDH
BAR69	696215.5	4546817	706.37	248.2	4-Feb-11	17-Feb-11	DDH
BAR70	696054	4547043	710.382	279.7	11-Feb-11	25-Feb-11	DDH
BAR71	696319.5	4546894	696.005	260.6	16-Feb-11	28-Feb-11	DDH
BAR72	696312.4	4547227	717.67	157	18-Feb-11	28-Feb-11	DDH
BAR73	696297.7	4546927	699.06	320.1	25-Feb-11	7-Mar-11	DDH
BAR75	696311.4	4546974	701.265	226.2	1-Mar-11	11-Mar-11	DDH
BAR74	696309	4546819	692.804	384.3	28-Feb-11	12-Mar-11	DDH
BAR76	696406.9	4547488	714.492	192.6	22-Mar-11	29-Mar-11	DDH
BAR77	696369	4547502	719.927	191.8	30-Mar-11	8-Apr-11	DDH
BAR78	696369.7	4547450	719.081	153.6	8-Apr-11	14-Apr-11	DDH
BAR79	696024.3	4547540	714.01	153	13-Apr-11	14-Apr-11	DDH
BAR80	696002.2	4547445	711.937	150.6	20-Apr-11	2-May-11	DDH
BAR81	696439.1	4547393	708.637	264.3	29-Mar-12	12-Apr-12	DDH
BAR82	696484.8	4547376	706.07	285.2	17-Apr-12	24-Apr-12	DDH
BAR84	696505.5	4547311	703.833	341.5	1-Oct-15	23-Oct-15	DDH
BAR86	696366.8	4546985	699.46	418.5	26-Oct-15	11-Nov-15	DDH
BAR83	696415.8	4547418	711.975	473.5	30-Sep-15	17-Nov-15	DDH
BAR85	696411.8	4546921	697.203	401.8	26-Oct-15	2-Dec-15	DDH

BAR87	696422.2	4547229	706.192	359.6	18-Nov-15	14-Dec-15	DDH
BI0001	696272.3	4547328	728.721	40	21-May-18	22-May-18	RC
BI0001	696288.7	4547321	727.052	40	22-May-18	22-May-18 23-May-18	RC
BI0002	696258.3	4547302	727.052	40	23-May-18	23-May-18	RC
BI0003	696286	4547289	727.009	49	24-May-18	24-May-18	RC
BI0004	696244	4547275	727.898	70	25-May-18	24-May-18 29-May-18	RC
BI0005	696281.8	4547258	724.698	40	29-May-18	29-May-18	RC
BI0000	695989.4	4546573	682.778	30	30-May-18	30-May-18	RC
BI0007	695986.7	4546543	682.636	30	30-May-18	31-May-18	RC
BI0008	696013.7	4546539	682.776	49	31-May-18	1-Jun-18	RC
00005	050015.7	4540555	002.770	45	51-Widy-10	1-3011-10	ne
BI0010	696023	4546567	680.727	50	1-Jun-18	1-Jun-18	RC
BI0011	696029.5	4546539	681.379	70	2-Jun-18	2-Jun-18	RC
BI0012	696005.3	4546510	683.244	52	3-Jun-18	4-Jun-18	RC
BI0013	696276.7	4547277	727.636	40	5-Jun-18	5-Jun-18	RC
BI0014	696290.2	4547303	728.715	40	6-Jun-18	6-Jun-18	RC
BI0015	696261.1	4547317	728.996	40	11-Jun-18	11-Jun-18	RC
BI0016	696251.8	4547288	728.41	46	11-Jun-18	12-Jun-18	RC
BI0017	696240.6	4547261	727.501	43	13-Jun-18	13-Jun-18	RC
BI0018	696278.8	4547342	730.007	40	13-Jun-18	14-Jun-18	RC
BI0019	696298.1	4547333	728.236	43	14-Jun-18	15-Jun-18	RC
BI0020	696265.1	4547265	725.918	70	15-Jun-18	16-Jun-18	RC
BI0021	696275.5	4547294	727.782	43	16-Jun-18	17-Jun-18	RC
BI0022	696265.5	4547282	727.679	40	17-Jun-18	17-Jun-18	RC
BI0023	696326.4	4547403	723.662	40	2-Aug-18	3-Aug-18	RC
BI0024	696309.5	4547395	727.043	44	6-Aug-18	6-Aug-18	RC
BI0025	696319.5	4547391	726.2	43	7-Aug-18	7-Aug-18	RC
BI0026	696317.8	4547374	726.011	40	7-Aug-18	8-Aug-18	RC
BI0027	696306.7	4547380	728.78	45	9-Aug-18	9-Aug-18	RC
BI0028	696282.7	4547374	730.624	46	10-Aug-18	10-Aug-18	RC
BI0029	696292.7	4547371	729.806	43	10-Aug-18	11-Aug-18	RC
BI0030	696302.7	4547368	728.966	46	11-Aug-18	12-Aug-18	RC
BI0031	696279.1	4547358	729.671	47	12-Aug-18	13-Aug-18	RC
BI0032	696288.7	4547353	728.347	47	14-Aug-18	14-Aug-18	RC
BI0033	696298.3	4547349	727.957	45	20-Aug-18	21-Aug-18	RC
BI0034	696307.7	4547344	727.502	43	21-Aug-18	22-Aug-18	RC
BI0035	696269.4	4547347	729.757	28	22-Aug-18	23-Aug-18	RC
BI0036	696288.7	4547337	728.977	46	23-Aug-18	24-Aug-18	RC
BI0037	696244	4547342	729.756	19	24-Aug-18	25-Aug-18	RC
BI0038	696253.6	4547338	729.818	47	25-Aug-18	26-Aug-18	RC
BI0039	696263	4547333	729.313	47	26-Aug-18	27-Aug-18	RC
BI0040	696280.7	4547325	727.892	13	27-Aug-18	28-Aug-18	RC
BI0041	696252	4547321	729.495	46	28-Aug-18	3-Sep-18	RC
BI0042	696222.9	4547335	728.67	46	3-Sep-18	4-Sep-18	RC
BI0043	696232.5	4547330	729.106	46	5-Sep-18	5-Sep-18	RC
BI0044	696242.4	4547326	729.471	46	5-Sep-18	6-Sep-18	RC
BI0045	696270.1	4547313	729.137	46	6-Sep-18	7-Sep-18	RC

BI0046	696278.9	4547309	728.749	45	7-Sep-18	8-Sep-18	RC
BI0047	696299.8	4547301	727.846	42	8-Sep-18	9-Sep-18	RC
BI0048	696198.8	4547329	726.947	43	9-Sep-18	10-Sep-18	RC
BI0049	696209.8	4547324	727.797	45	10-Sep-18	11-Sep-18	RC
BI0050	696219.8	4547320	728.743	46	11-Sep-18	12-Sep-18	RC
BI0051	696229.7	4547315	728.829	47	12-Sep-18	17-Sep-18	RC
BI0052	696238.7	4547311	728.933	31	22-Sep-18	23-Sep-18	RC
BI0053	696248.8	4547306	729.148	45	23-Sep-18	24-Sep-18	RC
BI0054	696268.4	4547298	728.093	46	24-Sep-18	25-Sep-18	RC
BI0055	696295.9	4547284	725.414	42	25-Sep-18	26-Sep-18	RC
BI0056	696305	4547283	724.952	39	27-Sep-18	27-Sep-18	RC
BI0057	696193.5	4547317	726.583	42	27-Sep-18	28-Sep-18	RC
BI0058	696204.3	4547311	727.299	44	28-Sep-18	1-Oct-18	RC
BI0059	696214	4547306	728.063	44	1-Oct-18	1-Oct-18	RC
BI0061	696231.8	4547298	728.459	46	3-Oct-18	3-Oct-18	RC
BI0060	696222	4547303	728.099	47	3-Oct-18	4-Oct-18	RC
BI0062	696242.2	4547293	728.69	55	4-Oct-18	4-Oct-18	RC
BI0063	696286.1	4547272	725.126	44	4-Oct-18	5-Oct-18	RC
BI0064	696296.5	4547267	724.307	40	5-Oct-18	5-Oct-18	RC
BI0065	696304.5	4547263	723.553	40	6-Oct-18	6-Oct-18	RC
BI0066	696184.5	4547304	726.131	40	6-Oct-18	6-Oct-18	RC
BI0067	696194.9	4547299	726.834	42	7-Oct-18	7-Oct-18	RC
BI0068	696204.7	4547293	720.834	42	7-Oct-18	8-Oct-18	RC
BI0068	696215	4547294	727.709	45	8-Oct-18	8-0ct-18	RC
			727.709				
BI0070	696224.3	4547285		46	9-Oct-18	9-Oct-18	RC
BI0071	696234.5	4547280	728.252	55	9-Oct-18	10-Oct-18	RC
BI0072	696254.7	4547271	726.846	55	10-Oct-18	15-Oct-18	RC
BI0073	696274.1	4547261	724.109	42	15-Oct-18	15-Oct-18	RC
BI0074	696289.7	4547254	722.665	38	16-Oct-18	16-Oct-18	RC
BI0075	696298.9	4547249	721.739	38	16-Oct-18	16-Oct-18	RC
BI0076	696202.1	4547278	726.872	43	16-Oct-18	17-Oct-18	RC
BI0077	696211.6	4547274	727.196	48	17-Oct-18	17-Oct-18	RC
BI0078	696221.9	4547269	727.548	48	17-Oct-18	18-Oct-18	RC
BI0079	696231.4	4547265	727.512	55	18-Oct-18	18-Oct-18	RC
BI0080	696251.5	4547261	726.085	53	22-Oct-18	22-Oct-18	RC
BI0081	696270.6	4547252	723.584	40	22-Oct-18	22-Oct-18	RC
BI0082	696280.2	4547247	722.817	40	23-Oct-18	23-Oct-18	RC
BI0083	696288.5	4547244	722.217	40	23-Oct-18	24-Oct-18	RC
BI0084	696297.3	4547239	721.525	35	24-Oct-18	24-Oct-18	RC
BI0085	696186.8	4547286	726.401	43	24-Oct-18	25-Oct-18	RC
BI0086	696195.3	4547282	726.494	43	25-Oct-18	25-Oct-18	RC
BI0087	696171.4	4547277	724.555	41	26-Oct-18	26-Oct-18	RC
BI0088	696180.7	4547273	725.051	41	26-Oct-18	26-Oct-18	RC
BI0089	696189.8	4547268	725.267	42	27-Oct-18	27-Oct-18	RC
BI0090	696198.9	4547264	725.682	48	27-Oct-18	27-Oct-18	RC
BI0091	696208	4547259	725.841	47	28-Oct-18	28-Oct-18	RC

DIOOOD	606460.2	45 47264	700 504	40	20.0-+ 40	20.0+10	DC
BI0092	696168.2	4547261	723.524	40	28-Oct-18	28-Oct-18	RC
BI0093	696178.2	4547257	724.02	41	28-Oct-18	29-Oct-18	RC
BI0094	696187.1	4547252	724.212	41	29-Oct-18	29-Oct-18	RC
BI0095	696162.9	4547247	722.569	38	30-Oct-18	30-Oct-18	RC
BI0096	696172.1	4547242	723.049	40	30-Oct-18	30-Oct-18	RC
BI0097	696261	4547256	725.336	53	31-Oct-18	31-Oct-18	RC
BI0098	695982.8	4546577	682.591	35	5-Nov-18	5-Nov-18	RC
BI0099	695981	4546564	682.713	30	6-Nov-18	6-Nov-18	RC
BI0100	695990.4	4546562	683.052	36	6-Nov-18	6-Nov-18	RC
BI0101	695999.3	4546559	683.203	47	7-Nov-18	7-Nov-18	RC
BI0102	696009.3	4546556	683.1	50	9-Nov-18	9-Nov-18	RC
BI0103	696019.3	4546554	682.299	60	9-Nov-18	10-Nov-18	RC
BI0104	696005.9	4546542	682.909	45	10-Nov-18	10-Nov-18	RC
BI0105	695978.4	4546548	682.899	40	11-Nov-18	11-Nov-18	RC
BI0106	695996.8	4546528	682.125	40	12-Nov-18	12-Nov-18	RC
BI0107	696006.5	4546526	682.764	40	12-Nov-18	12-Nov-18	RC
BI0108	696016.4	4546523	683.262	40	13-Nov-18	14-Nov-18	RC
BI0109	696027.1	4546520	684.057	40	14-Nov-18	19-Nov-18	RC
BI0110	696014.5	4546569	680.555	40	19-Nov-18	20-Nov-18	RC
BI0111	696005.2	4546576	680.573	45	21-Nov-18	21-Nov-18	RC
BI0112	696027.8	4546552	681.778	38	21-Nov-18	22-Nov-18	RC
BI0113	696301.6	4547370	729.133	43	22-Nov-18	22-Nov-18	RC
BI0114	696247	4547289	728.441	48	23-Nov-18	23-Nov-18	RC
BI0115	696295.6	4547332	728.414	42	23-Nov-18	24-Nov-18	RC
BI0116	696284	4547338	729.317	40	24-Nov-18	25-Nov-18	RC
BI0117	696240.7	4547334	729.509	46	27-Nov-18	28-Nov-18	RC
BI0283	696101.8	4546700	660.415	37	17-Nov-19	18-Jan-19	RC
BI0118	696306.4	4547176	710.613	59	9-Apr-19	9-Apr-19	RC
BI0119	696315.1	4547172	710.835	59	10-Apr-19	11-Apr-19	RC
BI0120	696296.2	4547143	707.861	59	11-Apr-19	11-Apr-19	RC
BI0121	696305.7	4547141	708.122	59	12-Apr-19	12-Apr-19	RC
BI0122	696285.7	4547121	707.015	56	13-Apr-19	13-Apr-19	RC
BI0123	696295.3	4547116	707.236	56	14-Apr-19	14-Apr-19	RC
BI0124	696277.2	4547091	704.224	53	22-Apr-19	22-Apr-19	RC
BI0125	696287	4547088	704.595	53	23-Apr-19	23-Apr-19	RC
BI0126	696264.2	4547064	702.082	50	23-Apr-19	24-Apr-19	RC
BI0127	696274.3	4547060	702.242	50	24-Apr-19	24-Apr-19	RC
BI0128	696251.8	4547037	700.514	48	25-Apr-19	25-Apr-19	RC
BI0129	696260.4	4547033	700.892	48	25-Apr-19	26-Apr-19	RC
BI0130	696244.7	4547006	700.421	48	26-Apr-19	26-Apr-19	RC
BI0131	696253.8	4547002	700.457	48	29-Apr-19	6-May-19	RC
BI0132	696228.3	4546981	700.26	47	6-May-19	6-May-19	RC
BI0133	696237.4	4546977	699.943	47	, 8-May-19	, 8-May-19	RC
BI0134	696200.9	4546961	700.41	47	, 8-May-19	, 9-May-19	RC
BI0135	696210.5	4546957	700.752	47	9-May-19	9-May-19	RC
BI0136	696219.4	4546952	700.624	47	9-May-19	9-May-19	RC

0104.27	606330.3	4546040	700.004	47	10 14 10	10 14 10	DC
BI0137	696228.2	4546948	700.004	47	10-May-19	10-May-19	RC
BI0138	696237.1	4546944	700.254	47	13-May-19	13-May-19	RC
BI0139	696193.7	4546931	700.602	48	13-May-19	14-May-19	RC
BI0140	696202.7	4546927	700.487	48	14-May-19	14-May-19	RC
BI0141	696212	4546923	700.259	48	14-May-19	16-May-19	RC
BI0142	696221.3	4546919	700.137	48	16-May-19	16-May-19	RC
BI0143	696230.5	4546915	699.891	48	17-May-19	17-May-19	RC
BI0144	696239.5	4546911	699.914	48	17-May-19	20-May-19	RC
BI0145	696183.3	4546902	700.358	47	20-May-19	21-May-19	RC
BI0146	696071.3	4546587	688.644	37	21-May-19	21-May-19	RC
BI0147	696078.7	4546583	688.851	37	22-May-19	22-May-19	RC
BI0148	696087.9	4546579	688.953	37	22-May-19	22-May-19	RC
BI0149	696097	4546575	688.655	37	23-May-19	23-May-19	RC
BI0150	696105.7	4546570	688.518	37	23-May-19	23-May-19	RC
BI0151	696115	4546564	691.393	37	23-May-19	24-May-19	RC
BI0152	696082.7	4546617	693.621	37	24-May-19	24-May-19	RC
BI0153	696091.7	4546612	693.366	37	27-May-19	27-May-19	RC
BI0154	696100.6	4546608	693.588	37	27-May-19	27-May-19	RC
BI0155	696110	4546606	691.464	37	28-May-19	28-May-19	RC
BI0156	696119	4546602	691.198	37	28-May-19	28-May-19	RC
BI0157	696128.3	4546597	691.363	37	29-May-19	29-May-19	RC
BI0158	696081.3	4546649	690.068	37	29-May-19	29-May-19	RC
510450	606000 C		600 475		<u> </u>	22.14.42	
BI0159	696088.6	4546645	690.175	37	30-May-19	30-May-19	RC
BI0160	696097.5	4546641	690.032	37	30-May-19	30-May-19	RC
BI0161	696106.5	4546637	690.291	37	31-May-19	31-May-19	RC
BI0162	696115.7	4546633	690.659	37	31-May-19	3-Jun-19	RC
BI0163	696124.9	4546628	690.928	37	3-Jun-19	3-Jun-19	RC
BI0164	696134.1	4546624	691.13	37	4-Jun-19	4-Jun-19	RC
BI0165	696143.3	4546620	691.403	37	4-Jun-19	4-Jun-19	RC
BI0166	696098.1	4546678	689.553	37	4-Jun-19	5-Jun-19	RC
BI0167	696105.8	4546674	689.763	37	5-Jun-19	5-Jun-19	RC
BI0168	696114.6	4546670	689.75	37	5-Jun-19	6-Jun-19	RC
BI0169	696123.4	4546666	690.018	37	6-Jun-19	6-Jun-19	RC
BI0170	696132.9	4546661	690	37	10-Jun-19	10-Jun-19	RC
BI0171	696110.8	4546702	689.372	37	11-Jun-19	11-Jun-19	RC
BI0172	696118.6	4546698	689.538	37	11-Jun-19	12-Jun-19	RC
BI0173	696127.3	4546694	689.643	37	12-Jun-19	12-Jun-19	RC
BI0174	696136.8	4546690	689.811	37	12-Jun-19	12-Jun-19	RC
BI0175	696145.4	4546686	689.815	37	13-Jun-19	13-Jun-19	RC
BI0176	696132.9	4546724	689.85	37	13-Jun-19	13-Jun-19	RC
BI0177	696139.1	4546721	689.853	37	14-Jun-19	14-Jun-19	RC
BI0178	696148.2	4546717	689.705	37	14-Jun-19	17-Jun-19	RC
BI0179	696156.8	4546713	689.406	37	17-Jun-19	17-Jun-19	RC
BI0180	696129.7	4546760	689.597	37	17-Jun-19	18-Jun-19	RC
BI0181	696137.5	4546756	689.489	37	18-Jun-19	18-Jun-19	RC
BI0182	696146.2	4546752	689.718	37	18-Jun-19	18-Jun-19	RC

BI0183	696155.3	4546748	690.15	37	19-Jun-19	19-Jun-19	RC
BI0184	696164.8	4546743	690.357	37	19-Jun-19	19-Jun-19	RC
BI0185	696173.8	4546739	689.987	37	20-Jun-19	20-Jun-19	RC
BI0186	696147.2	4546785	689.676	37	20-Jun-19	20-Jun-19	RC
BI0187	696155.1	4546782	689.777	37	21-Jun-19	21-Jun-19	RC
BI0188	696162.7	4546778	689.989	37	21-Jun-19	24-Jun-19	RC
BI0189	696170.4	4546774	689.742	37	24-Jun-19	24-Jun-19	RC
BI0190	696178	4546771	689.707	37	25-Jun-19	25-Jun-19	RC
BI0191	696185.5	4546767	689.67	37	25-Jun-19	26-Jun-19	RC
BI0192	696193.2	4546764	689.676	37	26-Jun-19	26-Jun-19	RC
BI0193	696200.7	4546760	690.063	37	27-Jun-19	27-Jun-19	RC
BI0194	696157.9	4546815	689.862	39	27-Jun-19	27-Jun-19	RC
BI0195	696167.6	4546810	689.556	37	28-Jun-19	28-Jun-19	RC
BI0196	696177.1	4546806	689.564	37	28-Jun-19	1-Jul-19	RC
BI0197	696185.9	4546802	689.518	37	1-Jul-19	1-Jul-19	RC
BI0198	696194.3	4546798	689.287	37	2-Jul-19	2-Jul-19	RC
BI0199	696203.3	4546794	689.594	37	2-Jul-19	2-Jul-19	RC
BI0200	696212.9	4546789	689.886	37	3-Jul-19	3-Jul-19	RC
BI0201	696166.6	4546841	689.968	37	3-Jul-19	4-Jul-19	RC
BI0202	696175.9	4546837	689.713	37	4-Jul-19	4-Jul-19	RC
BI0203	696185.3	4546832	689.692	37	4-Jul-19	5-Jul-19	RC
BI0204	696194.1	4546828	689.797	33	5-Jul-19	5-Jul-19	RC
BI0205	696203	4546824	689.4202	37	8-Jul-19	9-Jul-19	RC
BI0206	696212.7	4546819	689.508	37	9-Jul-19	9-Jul-19	RC
BI0207	696221.3	4546815	689.4265	37	10-Jul-19	10-Jul-19	RC
BI0208	696179.9	4546869	690.295	37	10-Jul-19	10-Jul-19	RC
BI0209	696189.5	4546864	690.335	37	11-Jul-19	11-Jul-19	RC
BI0210	696198.5	4546860	690.4799	37	11-Jul-19	12-Jul-19	RC
BI0211	696207.5	4546856	690.2299	37	12-Jul-19	15-Jul-19	RC
BI0212	696216.7	4546851	690.1499	37	15-Jul-19	16-Jul-19	RC
BI0213	696225.3	4546847	690.7311	37	16-Jul-19	16-Jul-19	RC
BI0214	696192.2	4546898	690.623	37	16-Jul-19	17-Jul-19	RC
BI0215	696201.2	4546894	690.596	37	17-Jul-19	17-Jul-19	RC
BI0216	696210.5	4546890	690.766	37	17-Jul-19	18-Jul-19	RC
BI0217	696219.3	4546886	690.647	37	22-Jul-19	22-Jul-19	RC
BI0218	696228.5	4546881	690.342	37	23-Jul-19	23-Jul-19	RC
BI0219	696238.1	4546877	690.485	37	23-Jul-19	23-Jul-19	RC
BI0220	696016	4546620	669.022	22	25-Jul-19	25-Jul-19	RC
BI0221	696025.7	4546618	668.595	22	26-Jul-19	25-Jul-19	RC
BI0222	696035	4546615	668.951	22	26-Jul-19	26-Jul-19	RC
BI0223	696008.4	4546591	668.429	22	26-Jul-19	29-Jul-19	RC
BI0223	696018	4546589	668.405	22	29-Jul-19	30-Jul-19	RC
BI0224	696027.5	4546586	668.151	22	30-Jul-19	30-Jul-19	RC
BI0225	696023.8	4546649	669.55	22	30-Jul-19	30-Jul-19	RC
BI0220	696033.8	4546646	669.401	22	31-Jul-19	31-Jul-19	RC
BI0227	696043.2	4546644	668.848	22	31-Jul-19	31-Jul-19	RC
010220	050045.2		000.040	~~~	21-JUI-12	21-101-12	nc nc

BI0229	696020	4546635	669.394	22	1 Aug 10	1 Aug 10	RC
BI0229	696020	4546632		22	1-Aug-19	1-Aug-19	RC
			669.258	22	1-Aug-19	1-Aug-19	-
BI0231	696050.8 696228.4	4546642	668.622	12	1-Aug-19	1-Aug-19	RC DDH
BD001		4547290	709.487	12	9-Aug-19	13-Aug-19	
BD002	696236.2	4547285	709.156	12	13-Aug-19	14-Aug-19	DDH
BD003	696219.5	4547277	709.496		14-Aug-19	15-Aug-19	DDH
BD004 BD005	696227.7	4547273 4547265	709.213 709.643	12.05 12.15	15-Aug-19	19-Aug-19	DDH DDH
BD005 BD006	696209.6 696218	4547265	709.843	12.15	20-Aug-19 20-Aug-19	20-Aug-19 21-Aug-19	DDH
BD000 BD007	696263.2	4547201	709.534	12.1	20-Aug-19 21-Aug-19	21-Aug-19 21-Aug-19	DDH
BD007 BD008	696272.2	4547295	709.793	12.15	21-Aug-19 21-Aug-19	21-Aug-19 22-Aug-19	DDH
BD008 BD009	696280.4	4547295	709.739	12.15	21-Aug-19 22-Aug-19	22-Aug-19 23-Aug-19	DDH
BD003	696289.7	4547287	709.33	12.25	26-Aug-19	25-Aug-19 26-Aug-19	DDH
BD010 BD011	696269.7	4547313	709.696	12.1	26-Aug-19	26-Aug-19 26-Aug-19	DDH
BD011 BD012	696277.4	4547313	709.532	12.15	27-Aug-19	20-Aug-19 27-Aug-19	DDH
BD012 BD013	696285.8	4547306	709.738	12.15	27-Aug-19 27-Aug-19	27-Aug-19 28-Aug-19	DDH
BD013 BD014	696294.7	4547302	709.988	12.45	28-Aug-19	28-Aug-19 28-Aug-19	DDH
BD014 BD015	696276.2	4547328	709.836	12.1	28-Aug-19	28-Aug-19	DDH
BD015 BD016	696284.6	4547324	709.818	12.1	29-Aug-19	29-Aug-19	DDH
BD010 BD017	696292.3	4547320	709.653	12.15	29-Aug-19	29-Aug-19	DDH
BD017 BD018	696300.9	4547316	710.255	12.15	30-Aug-19	2-Sep-19	DDH
BD010 BD019	696286.5	4547339	709.519	12.2	2-Sep-19	2-Sep-19	DDH
BD019	696293.8	4547336	709.742	12.2	3-Sep-19	3-Sep-19	DDH
BD020	696300.9	4547332	709.924	12.1	3-Sep-19	3-Sep-19	DDH
BD021	696309.4	4547328	709.87	12.3	4-Sep-19	4-Sep-19	DDH
BD023	696295.4	4547350	709.856	12	4-Sep-19	4-Sep-19	DDH
BD024	696303.2	4547347	709.899	12.3	4-Sep-19	5-Sep-19	DDH
BD025	696311.5	4547342	709.991	12.1	5-Sep-19	5-Sep-19	DDH
BD026	696319.8	4547338	710.357	12.3	5-Sep-19	5-Sep-19	DDH
BI0232	696021.2	4546785	691.277	47	16-Sep-19	17-Sep-19	RC
						· · ·	
BI0233	696011.7	4546787	691.288	47	17-Sep-19	18-Sep-19	RC
BI0234	696002.3	4546790	691.225	47	18-Sep-19	18-Sep-19	RC
BI0235	695992.1	4546793	691.032	47	18-Sep-19	18-Sep-19	RC
BI0236	696027.2	4546798	691.636	41	19-Sep-19	19-Sep-19	RC
BI0237	696017.2	4546800	691.498	47	19-Sep-19	19-Sep-19	RC
BI0238	696007.6	4546803	690.918	47	20-Sep-19	20-Sep-19	RC
BD027	696285	4547230	710.514	135.5	16-Sep-19	23-Sep-19	DDH
BI0239	695997.8	4546806	690.871	47	23-Sep-19	24-Sep-19	RC
BI0240	695988.1	4546808	690.742	47	25-Sep-19	25-Sep-19	RC
BI0241	696089.4	4547155	710.931	71	26-Sep-19	26-Sep-19	RC
BI0242	696079.8	4547157	711.02	71	27-Sep-19	27-Sep-19	RC
BI0243	696070	4547160	710.469	71	30-Sep-19	30-Sep-19	RC
BI0244	696060.2	4547162	710.306	71	1-Oct-19	1-Oct-19	RC
BI0245	696087.4	4547124	710.593	71	2-Oct-19	2-Oct-19	RC
BI0246	696077.6	4547127	709.823	49	2-Oct-19	3-Oct-19	RC
BI0247	696067.4	4547130	709.077	71	4-Oct-19	4-Oct-19	RC

BI0248	696058.4	4547132	708.313	71	7-Oct-19	7-Oct-19	RC
BI0249	696085.4	4547094	709.905	70	8-Oct-19	8-Oct-19	RC
BI0250	696075.5	4547096	708.788	69	8-Oct-19	9-Oct-19	RC
BI0251	696065.8	4547099	707.487	68	9-Oct-19	9-Oct-19	RC
BI0252	696056.3	4547101	706.299	68	10-Oct-19	10-Oct-19	RC
BI0253	696081.4	4547064	709.258	70	11-Oct-19	11-Oct-19	RC
BI0254	696071.6	4547066	708.366	68	14-Oct-19	17-Oct-19	RC
BI0255	696062.3	4547069	707.639	67	17-Oct-19	17-Oct-19	RC
BI0256	696052.7	4547071	707.039	67	17-Oct-19	18-Oct-19	RC
BI0257	696077.9	4547066	708.625	70	18-Oct-19	22-Oct-19	RC
BI0258	696085.9	4547095	709.91	80	22-Oct-19	23-Oct-19	RC
BI0259	696074.1	4547035	709.757	70	23-Oct-19	24-Oct-19	RC
BI0260	696065.8	4547037	708.923	70	24-Oct-19	24-Oct-19	RC
BI0261	696056.3	4547039	707.456	66	25-Oct-19	25-Oct-19	RC
BI0262	696046.7	4547042	706.557	66	28-Oct-19	28-Oct-19	RC
BI0263	696095.5	4547107	710.113	72	29-Oct-19	29-Oct-19	RC
BI0264	696083.9	4547079	709.519	27	30-Oct-19	29-Oct-19	RC
BI0265	696058.1	4546949	689.597	47	30-Oct-19	30-Oct-19	RC
BI0266	696047.3	4546952	689.76	47	30-Oct-19	31-Oct-19	RC
BI0267	696037.1	4546951	689.951	47	31-Oct-19	31-Oct-19	RC
BI0268	696058.5	4546915	689.824	38	4-Nov-19	4-Nov-19	RC
BI0269	696057.3	4546915	689.738	47	5-Nov-19	5-Nov-19	RC
BI0270	696046.6	4546918	689.679	47	6-Nov-19	6-Nov-19	RC
BI0271	696036.9	4546920	689.844	47	6-Nov-19	6-Nov-19	RC
BI0272	696027.3	4546923	689.776	47	7-Nov-19	7-Nov-19	RC
BI0273	696017.6	4546925	689.894	47	7-Nov-19	8-Nov-19	RC
BI0274	696051.1	4546885	690.941	40	8-Nov-19	11-Nov-19	RC
BI0275	696050.2	4546886	690.963	47	11-Nov-19	11-Nov-19	RC
BI0276	696040.6	4546888	691.139	47	12-Nov-19	12-Nov-19	RC
BI0277	696031	4546891	690.752	47	12-Nov-19	13-Nov-19	RC
BI0278	696050.3	4546686	655.824	45	13-Nov-19	13-Nov-19	RC
BI0279	696046.3	4546687	655.865	49	14-Nov-19	14-Nov-19	RC
BI0280	696036.6	4546690	655.985	43	15-Nov-19	15-Nov-19	RC
BI0281	696027	4546692	655.911	44	16-Nov-19	16-Nov-19	RC
BI0282	696111.2	4546698	660.82	37	17-Nov-19	17-Nov-19	RC
BI0284	696092.1	4546703	659.448	48	18-Nov-19	18-Nov-19	RC
BI0285	696082.5	4546705	658.304	48	20-Nov-19	20-Nov-19	RC
BI0286	696073	4546708	657.515	38	20-Nov-19	21-Nov-19	RC
BI0287	696053.7	4546713	656.768	33	21-Nov-19	21-Nov-19	RC
BI0288	696063.2	4546710	656.882	35	21-Nov-19	22-Nov-19	RC
BI0289	696060.7	4546668	655.141	72	22-Nov-19	26-Nov-19	RC
BI0290	696062.6	4546732	656.209	33	27-Nov-19	27-Nov-19	RC
BI0291	696061.6	4546733	656.256	38	27-Nov-19	27-Nov-19	RC
BI0292	696072.2	4546730	656.264	34	28-Nov-19	29-Nov-19	RC
BI0293	696081.6	4546727	656.721	35	29-Nov-19	29-Nov-19	RC
BI0294	696091	4546725	656.928	36	30-Nov-19	30-Nov-19	RC
010294	090091	+340723	050.920	50	30-1100-13	30-1100-13	nc

BI0295	696060.2	4546746	655.908	35	1-Dec-19	1-Dec-19	RC
BI0295	696069.9	4546743	655.676	29	2-Dec-19	2-Dec-19	RC
BI0290	696079.4	4546740	655.817	29	3-Dec-19	3-Dec-19	RC
BI0297	696089	4546738	656.21	29	10-Dec-19	10-Dec-19	RC
BI0299	696093.5	4546752	656.199	43	11-Dec-19	11-Dec-19	RC
BI0200	696102.7	4546750	655.776	54	11-Dec-19	12-Dec-19	RC
BI0301	696064.2	4546760	655.631	30	12-Dec-19	13-Dec-19	RC
BI0302	696065.4	4546760	655.617	38	13-Dec-19	13-Dec-19	RC
BI0303	696073.7	4546758	655.584	32	13-Dec-19	14-Dec-19	RC
BI0304	696083.5	4546755	655.638	34	14-Dec-19	15-Dec-19	RC
BI0305	696103.1	4546765	656.258	55	15-Dec-19	16-Dec-19	RC
BI0306	696112.7	4546762	655.835	67	17-Dec-19	17-Dec-19	RC
BI0307	696121.8	4546760	656.176	67	7-Jan-20	8-Jan-20	RC
BI0308	696132.3	4546757	656.49	67	8-Jan-20	9-Jan-20	RC
BI0309	696124.4	4546775	656.013	66	9-Jan-20	10-Jan-20	RC
BI0310	696121	4546695	660.815	40	13-Jan-20	13-Jan-20	RC
BI0312	696105.2	4546780	655.789	57	13-Jan-19	14-Jan-20	RC
BI0311	696036.7	4546827	680.109	35	14-Jan-20	15-Jan-20	RC
BI0313	696036.8	4546827	680.064	36	15-Jan-20	16-Jan-20	RC
BI0314	696027.1	4546830	680.091	36	16-Jan-20	16-Jan-20	RC
BI0315	696017.4	4546833	680.024	36	16-Jan-20	17-Jan-20	RC
BI0316	696007.9	4546835	680.431	36	17-Jan-20	20-Jan-20	RC
BI0317	696058.6	4546977	690.117	56	17-Jan-20	22-Jan-20	RC
BI0318	696057.4	4546977	690.199	47	22-Jan-20	22-Jan-20	RC
BI0319	696048.6	4546979	690.263	47	22-Jan-20	23-Jan-20	RC
BI0320	696038.8	4546982	690.49	47	23-Jan-20	24-Jan-20	RC
BI0321	696029.4	4546984	690.419	47	24-Jan-20	27-Jan-20	RC
BI0322	696042.6	4546857	680.16	40	27-Jan-20	28-Jan-20	RC
BI0323	696041.6	4546857	680.198	36	28-Jan-20	28-Jan-20	RC
BI0324	696033.2	4546859	679.808	38	28-Jan-20	29-Jan-20	RC
BI0325	696023.1	4546862	680.056	36	29-Jan-20	30-Jan-20	RC
BI0326	696013.7	4546864	679.905	36	29-Jan-20	30-Jan-20	RC
BI0327	696004.1	4546867	679.773	36	29-Jan-20	31-Jan-20	RC
BI0328	695994.1	4546870	679.844	56	31-Jan-20	3-Feb-20	RC
BI0343	696146	4546816	654.749	88	3-Mar-20	3-Feb-20	RC
BI0329	696021.5	4546893	679.936	36	3-Feb-20	4-Feb-20	RC
BI0330	696016	4546895	679.99	58	4-Feb-20	5-Feb-20	RC
BI0344	696155.8	4546813	654.524	88	4-Mar-20	5-Feb-20	RC
BI0332	695998.1	4546837	679.433	36	5-Feb-20	6-Feb-20	RC
BI0331	695988.6	4546840	680.157	58	6-Feb-20	7-Feb-20	RC
BI0333	696114.6	4546778	656.058	77	7-Feb-20	10-Feb-20	RC
BI0334	696120.7	4546792	655.386	80	10-Feb-20	12-Feb-20	RC
BI0336	696111	4546795	655.398	20	17-Feb-20	17-Feb-20	RC
BI0335	696092.9	4546766	656.513	52	17-Feb-20	18-Feb-20	RC
BI0337	696127.7	4546805	654.881	21	18-Feb-20	18-Feb-20	RC
BI0338	696137.8	4546802	655.294	85	18-Feb-20	19-Feb-20	RC

BI0339	696147.8	4546802	654.73	88	19-Feb-20	20-Feb-20	RC
BI0340	696118	4546807	654.938	18	24-Feb-20	25-Feb-20	RC
BI0341	696157.7	4546799	654.453	88	25-Feb-20	27-Feb-20	RC
BI0342	696136.2	4546818	654.752	88	28-Feb-20	2-Mar-20	RC
BI0345	696143.6	4546832	654.194	88	6-Mar-20	7-Mar-20	RC
BI0346	696153.2	4546829	653.846	93	7-Mar-20	8-Mar-20	RC
BI0347	696163.1	4546827	653.799	95	8-Mar-20	10-Mar-20	RC
BI0348	696146.2	4546850	654.295	82	10-Mar-20	11-Mar-20	RC
BI0349	696091.6	4546731	655.195	88	16-Mar-20	17-Mar-20	RC
BI0350	696101.6	4546729	655.31	88	19-Mar-20	19-Mar-20	RC
BI0351	696110.1	4546723	655.212	88	21-Mar-20	20-Mar-20	RC
BI0352	696155.6	4546847	654.287	86	22-Mar-20	22-Mar-20	RC
BI0353	696165.6	4546844	654.712	92	22-Mar-20	24-Mar-20	RC
BI0354	696151	4546736	660.691	36	24-Mar-20	25-Mar-20	RC
BI0355	696158.7	4546732	660.952	36	25-Mar-20	25-Mar-20	RC
BI0356	696110.5	4546793	655.487	77	13-Apr-20	16-Apr-20	RC
BI0357	696107.6	4546810	654.951	68	16-Apr-20	21-Apr-20	RC
BI0358	696108.7	4546810	655.108	75	21-Apr-20	23-Apr-20	RC
BI0359	696083.6	4546770	656.133	53	23-Apr-20	24-Apr-20	RC
BI0360	696084.5	4546770	656.114	20	24-Apr-20	25-Apr-20	RC
BI0361	696095.2	4546783	655.477	33	25-Apr-20	25-Apr-20	RC
BI0362	696096.3	4546782	655.514	59	26-Apr-20	26-Apr-20	RC
BI0363	696101.1	4546796	655.45	81	26-Apr-20	28-Apr-20	RC
BI0364	696102.1	4546796	655.535	67	28-Apr-20	29-Apr-20	RC
BI0365	696117.9	4546807	655	31	29-Apr-20	4-May-20	RC
BI0366	696127.7	4546804	654.88	16	4-May-20	6-May-20	RC
BI0367	696117.8	4546826	654.75	28	6-May-20	8-May-20	RC
BI0368	696133.8	4546835	654.995	15	8-May-20	9-May-20	RC
BI0369	696053.7	4546643	647.216	57	9-May-20	10-May-20	RC
BI0370	696063.8	4546639	647.348	57	10-May-20	10-May-20	RC
BI0371	696072.7	4546635	647.381	57	10-May-20	11-May-20	RC
BI0372	696054.9	4546657	647.322	57	11-May-20	12-May-20	RC
BI0373	696064.1	4546654	647.373	57	12-May-20	13-May-20	RC
BI0374	696073.8	4546651	647.98	57	13-May-20	13-May-20	RC
BI0375	696101.7	4547389	723.537	90	26-May-20	27-May-20	RC
BI0376	696072	4547349	722.362	75	28-May-20	28-May-20	RC
BI0377	696115.1	4547444	723.903	120	29-May-20	31-May-20	RC
BI0378	696133.2	4547477	721.404	51	1-Jun-20	2-Jun-20	RC
BD028	696266.9	4546744	694.717	370	6-May-21	18-May-21	DDH
BD029	696273.8	4546807	695.077	365.2	19-May-21	28-May-21	DDH
BD030	696287.2	4546953	701.937	347	31-May-21	8-Jun-21	DDH
BD031	696210.7	4546668	691.363	281	8-Jun-21	16-Jun-21	DDH

RESOURCES

BD032	696180.4	4546571	689.131	299	28-Jan-22	8-Feb-22	DDH
BD033	696196.2	4546606	689.638	322.7	9-Feb-22	17-Feb-22	DDH
BD034	696363.2	4547203	711.129	283.9	18-Feb-22	25-Feb-22	DDH
BD035	696347.3	4547158	710.865	251	28-Feb-22	7-Mar-22	DDH
BD036	696347.8	4547158	711.023	300	7-Mar-22	15-Mar-22	DDH
BD037	696381.3	4547089	704.772	329.1	15-Mar-22	23-Mar-22	DDH
BD038	696376.3	4547041	702.573	330	25-Mar-22	30-Mar-22	DDH
BD039	696374.6	4547254	712.8	275	30-Mar-22	4-Apr-22	DDH
BD040	696152.9	4546513	687.837	260	5-Apr-22	9-Apr-22	DDH
BD041	696220.9	4546603	691.974	440.1	12-May-22	26-May-22	DDH
BD042	696273.1	4546740	694.729	450	27-May-22	8-Jun-22	DDH
BD043	696325.2	4546791	695.409	474.5	9-Jun-22	23-Jun-22	DDH
BD044	696401.3	4546833	691.672	521	24-Jun-22	14-Jul-22	DDH
BD045	696427.4	4547512	712.664	293.9	19-Jul-22	31-Jul-22	DDH
BD046	696415.4	4547561	715.455	344	1-Aug-22	23-Sep-22	DDH
BD047	696438.8	4547618	719.573	245	23-Sep-22	6-Oct-22	DDH
BD048	696072.9	4546393	686.956	224	7-Oct-22	19-Oct-22	DDH
BD049	696506.1	4547441	705.869	380	20-Oct-22	7-Nov-22	DDH
BD050	696436.8	4547351	708.828	329	8-Nov-22	21-Nov-22	DDH
BD051	696431.6	4547291	707.514	329	23-Nov-22	7-Dec-22	DDH
BD052	696410.2	4547198	706.335	361.9	31-Jan-23	20-Feb-23	DDH
BD053	696296.9	4546801	693.475	380	21-Feb-23	10-Mar-23	DDH